分析 (1)根据一次函数图象上点的坐标特征可求出点A、B的坐标,联立两直线解析式成方程组,通过解方程组可求出点C的坐标,再利用三角形的面积公式可求出△ABC的面积;
(2)假设能,设点P的坐标为(m,-2m-1),分m<-1和m>0两种情况考虑,根据三角形的面积公式结合S△APC=6,即可得出关于m的一元一次方程,解之即可得出m的值,将其代入点P的坐标中即可得出结论.
解答 解:(1)当x=0时,y=2x+3=3,
∴点A的坐标为(0,3);
当x=0时,y=-2x-1=-1,
∴点B的坐标为(0,-1),
∴AB=3-(-1)=4.
联立两直线解析式成分方程组,
$\left\{\begin{array}{l}{y=2x+3}\\{y=-2x-1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
∴点C的坐标为(-1,1),
∴S△ABC=$\frac{1}{2}$AB•|xC|=$\frac{1}{2}$×4×1=2.
(2)假设能,设点P的坐标为(m,-2m-1),
当m<-1时,有$\frac{1}{2}$AB•(-m)-2=-2m-2=6,
解得:m=-4,
此时点P的坐标为(-4,7);
当m>0时,有$\frac{1}{2}$AB•m+2=2m+2=6,
解得:m=2,
此时点P的坐标为(2,-5).
综上所述:在直线BC上能找到点P,使得S△APC=6,点P的坐标为(-4,7)或(2,-5).
点评 本题考查了一次函数图象上点的坐标特征、三角形的面积以及解一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A、B的坐标;(2)分m<-1和m>0两种情况找出关于m的一元一次方程.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 检测一批灯泡的使用寿命 | |
B. | 调查昆明《都市条形码》栏目的收视率 | |
C. | 了解我省中学生视力情况 | |
D. | 了解九(1)班学生校服的尺码情况 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com