精英家教网 > 初中数学 > 题目详情
7.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.
(1)求证:△ABC≌△DEF;
(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.

分析 (1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;
(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.

解答 (1)证明:∵AB∥DE,
∴∠A=∠D,
∵AF=FC=CD
∴AC=DF,
在△ABC和△DEF中
$\left\{\begin{array}{l}{AB=DE}\\{∠A=∠D}\\{AC=DF}\end{array}\right.$
∴△ABC≌△DEF(SAS),
(2)解:∵AF=FC,
∴F为AC中点,
又∵G为AB中点,
∴GF为△ABC的中位线,
∴BC=2GF=8,
又∵△ABC≌△DEF,
∴EF=BC=8,
∴EG=EF+FG=BC+FG=8+4=12,

点评 本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.am=4,an=3,则am-2n=$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.圆锥底面半径为4cm,高为3cm,则它的表面积是36πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图所示,∠DAB=∠DCB=90°.CB=CD,且AD=3,AB=4,则AC的长为(  )
A.$\frac{7\sqrt{2}}{2}$B.5C.$\frac{\sqrt{2}}{7}$D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若am=3,an=4,则a2m+3n=576.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,矩形OABC如图放置,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2次碰到矩形的边时,点P的坐标为(7,4);当点P第6次碰到矩形的边时,点P的坐标为(0,3);当点P第2015次碰到矩形的边时,点P的坐标为(1,4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是6cm3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(-4,0),连接PD、PE、DE.
(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知直线y=2x+7与直线y=-2x-3相交于点C.
(1)求两条直线的交点C的坐标;
(2)求△ABC的面积;
(3)结合图象回答:当x取何值时,2x+7>-2x-3?当x取何值时,2x+7<-2x-3?

查看答案和解析>>

同步练习册答案