精英家教网 > 初中数学 > 题目详情
精英家教网如图:已知在等边三角形ABC中,点D、E分别是AC、CB延长线上的点,且CD=BE,连接DB并延长DB交AE于点F.
求证:DA2=DB•DF.
分析:欲证DA2=DB•DF,可证△ADB∽△FDA,通过观察发现两个三角形证∠DBA=∠DAF,∠ADB=∠FDA即可.
解答:证明:∵△ABC是等边三角形,
∴∠CAB=∠ACB=∠ABC,AB=BC,(1分)
∵∠ACB=∠ABC,
∴∠DCB=∠EBA,(1分)
在△DCB与△EBA中,
DC=EB
∠DCB=∠EBA
AB=BC

∴△DCB≌△EBA,(2分)
∴∠DBC=∠EAB(,1分)
∵∠CBA=∠CAB,
∴∠CBA+∠DBC=∠CAB+∠EAB,
即∠DBA=∠DAF,(1分)
又∵∠ADB=∠FDA,
∴△ADB∽△FDA,(1分)
DB
DA
=
DA
DF
,(1分)
∴DA2=DB•DF.(2分)
点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届山东胜利七中九年级中考二模数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖北黄冈卷)数学 题型:解答题

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市考数学一模试卷 题型:选择题

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

同步练习册答案