精英家教网 > 初中数学 > 题目详情
阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
.根据该材料解决下列问题:已知x1、x2是方程x2+6x+3=0的两实数根,求下列各式的值:
(1)x1x2+x1+x2;(2)求
1
x1
+
1
x2
分析:(1)根据材料,求得x1+x2=-6,x1•x2=3,
(2)将
1
x1
+
1
x2
化为
x1+x2 
x1x2

再代入求值即可.
解答:解:∵x1+x2=-
b
a
,x1•x2=
c
a
,∴x1+x2=-6,x1•x2=3,
(1)原式=3+(-6)=-3;
(2)原式=
x1+x2 
x1x2
=
-6
3
=-2.
点评:本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

20、阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是

(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2010•淮北模拟)阅读材料,解答问题.
例   用图象法解一元二次不等式:.x2-2x-3>0
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是
x<-1或x>3
x<-1或x>3

(2)仿照上例,用图象法解一元二次不等式:x2-1>0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a

根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
x2
x1
+
x1
x2
的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x 0 1 2 3
y 5 2 1 2
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-数学公式,x1•x2=数学公式
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求数学公式+数学公式的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x0123
y5212
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(二十二)(解析版) 题型:解答题

(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1•x2=
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x123
y5212
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.

查看答案和解析>>

同步练习册答案