精英家教网 > 初中数学 > 题目详情

四边形ABCD的对角线AC、BD交于P,过点P作直线,交AD于E,交BC于F,若PE=PF,且AP+AE=CP+CF,证明:四边形ABCD为平行四边形.

证明:延长AC,在C上方取N,A下方取M,使AM=AE,CN=CF,则由已知可得PM=PN,易证△PME≌△PNF,且△AME,△CNF都是等腰三角形.
∴∠M=∠N,∠MEP=∠NFP
∴∠AEP=∠PFC
∴AD∥BC,
可证得△PAE≌△PCF,得PA=PC,
再证△PED≌△PFB.得PB=PD.
∴ABCD为平行四边形.
分析:熟记平行四边形的判定,其中对角线互相平分,是平行四边形,延长AC后,证明AD∥BC,然后再证明三角形全等,证得对角线互相平分,得到结论.
点评:本题考查平行四边形的判定定理,本题关键是正确作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内心.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内心.

(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内心.
(2)分别画出图3平行四边形和图4梯形的准内心.(作图工具不限,不写作法,但要有必要的说明)
(3)同样,我们定义:到凸四边形一组对角顶点的距离相等,到另一组对角顶点的距离也相等的点叫凸四边形的准外心.若QA=QC,QB=QD,则点Q就是四边形ABCD的准外心.那么你认为Q是
AC的中垂线
AC的中垂线
BD的中垂线
BD的中垂线
的交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,EF过平行四边形ABCD的对角形的交点O,交AD于点E,交BC于点F,已知AB=5,BC=6,OE=2,那么四边形EFCD的周长是
15
15

查看答案和解析>>

科目:初中数学 来源:1+1轻巧夺冠·优化训练·八年级数学下 题型:013

若四边形ABCD的对角∠BAD与∠BCD的角平分线互相平行,则∠B与∠D的关系为

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,EF过平行四边形ABCD的对角形的交点O,交AD于点E,交BC于点F,已知AB=5,BC=6,OE=2,那么四边形EFCD的周长是________.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若四边形ABCD的对角∠BAD与∠BCD的角平分线互相平行,则∠B与∠D的关系为


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步练习册答案