精英家教网 > 初中数学 > 题目详情
18.已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.
(1)求证:AD=CE;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.

分析 (1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB,则易证△ADC≌△ECD,利用全等三角形的对应边相等即可证得;
(2)根据平行四边形性质推出AE=BD=CD,AE∥CD,得出平行四边形,根据AC=DE推出即可.

解答 (1)证明:∵AB=AC,
∴∠B=∠ACB,
又∵?ABDE中,AB=DE,AB∥DE,
∴∠B=∠EDC=∠ACB,AC=DE,
在△ADC和△ECD中,$\left\{\begin{array}{l}{AC=DE}&{\;}\\{∠EDC=∠ACB}&{\;}\\{DC=CD}&{\;}\end{array}\right.$,
∴△ADC≌△ECD(SAS).
(2)解:点D在BC的中点上时,四边形ADCE是矩形,理由如下:
∵四边形ABDE是平行四边形,
∴AE=BD,AE∥BC,
∵D为边长BC的中点,
∴BD=CD,
∴AE=CD,AE∥CD,
∴四边形ADCE是平行四边形,
∵△ADC≌△ECD,
∴AC=DE,
∴四边形ADCE是矩形.

点评 本题考查了平行四边形的性质以及等腰三角形的性质、全等三角形的判定与性质,矩形的判定的应用,证明两线段相等常用的方法就是转化为证两三角形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.已知:3a=9,3b=27,则3a+b+1的值为729.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.2016年国庆期间,某校准备组织部分教职工到黄山风景区旅游.经市场调研发现.如图,线段CD表示甲旅行社所需总费用y(元)与旅游人数x的函数图象,线段AB表示乙旅行社所需总费用y(元)与旅游人数x的函数图象,根据图象提供的信息,解答下列问题:
(1)分别求出y(元)和y(元)关于x的函数解析式:
(2)该校如何选择旅行社费用更划算?
(3)该校准备组织10-30(含10和30)名教职工去旅游,如何安排旅游人数和选择哪个旅行社的费用最少?最少费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读与思考:
   婆罗摩笈多是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数及加减法运算仅晚于中国九章算术而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明如下:
    已知:如图,四边形ABCD内接于圆O,对角线AC⊥BD于点M,ME⊥BC于点E,延长EM交CD于点F,求证:F是AD中点
 证明∵AC⊥BD,ME⊥BC
∴∠CBD=∠CME
∵∠CBD=∠CAD,∠CME=∠AMF
∴∠CAD=∠AMF
∴AF=MF
∵∠AMD=90°,同时∠MAD+∠MDA=90°
∴∠FMD=∠FDM
∴MF=DF,∴AF=DF即F是AD中点.
请你阅读婆罗摩笈多定理的证明过程,完成婆罗摩笈多逆定理的证明:
(1)如图1,四边形ABCD内接于圆O,对角线AC⊥BD于点M,F为AD中点,连接FM并延长交BC于点E,求证:ME⊥BC.
(2)已知:如图2,△ABC内接于圆O,∠B=30°,∠ACB=45°,AB=2,点D在圆O上,∠BCD=60°,连接AD交BC于点P,作ON⊥CD于点N,连接并延长NP交AB于点M,求证PM⊥BA并求PN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.为了迎接校运会开幕式,现要求甲乙两队赶制小红旗,已知甲队的工作效率是乙队的2倍,若两队各单独赶制400面小红旗,甲队比乙队少用4天完成.
(1)问甲、乙两队每天各能制作多少面小红旗?
(2)已知甲队、乙队每天的制作费用分别是400元、250元,若要制作的小红旗的数量为1800面,且总费用不超过8000元,问至少应安排甲队制作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系中,△ABC的三个顶点坐标分别为(1,1)、(3,4)、(3,0).
(1)请画出△ABC关于y轴对称的△A1B1C1,若P(a,b)是△ABC内任一点,写出它的对应点P′的坐标.
(2)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,并写出B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)画出与△ABC关于y轴对称的△A1B1C1,点C1的坐标为(1,4);
(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(-2,-2),( $\sqrt{2}$,$\sqrt{2}$  ),…,都是梦之点,显然梦之点有无数个.
(1)若点P(2,b)是反比例函数y=$\frac{n}{x}$(n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;
(2)⊙O的半径是$\sqrt{2}$,
①求出⊙O上的所有梦之点的坐标;
②已知点 M(m,3),点Q是(1)中反比例函数y=$\frac{n}{x}$图象上异于点P的梦之点,过点Q 的直线l与y轴交于点 A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案