分析 由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2),求出直线y=4x+2与x轴的交点坐标,观察直线y=kx+b落在直线y=4x+2的下方且直线y=4x+2落在x轴下方的部分对应的x的取值即为所求.
解答 解:∵经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),
∴直线y=kx+b与直线y=4x+2的交点A的坐标为(-1,-2),
∵当x>-1时,kx+b<4x+2,
当x<-$\frac{1}{2}$时,4x+2<0,
∴不等式kx+b<4x+2<0的解集为-1<x<-$\frac{1}{2}$.
故答案为-1<x<-$\frac{1}{2}$.
点评 本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}x=6\\ y=10\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=6\\ y=-10\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=-6\\ y=10\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=-6\\ y=-10\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com