精英家教网 > 初中数学 > 题目详情
如图,在抛物线y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为______.
根据B1的坐标,易求得直线OB1的解析式为:y=-
3
3
x;
∵OB1A1是等边三角形,且B1(-
3
2
,-
1
2
),
∴OA1=1,A1(0,-1);
∵直线OB1A1B2,又直线A1B2过点A1(0,-1),
∴直线A1B2的解析式为y=-
3
3
x-1,联立抛物线的解析式,得:
y=-
3
3
x-1
y=-
2
3
x2

解得:
x=
3
y=-2
(x>0);
故B2
3
,-2),A1A2=2,A2(0,-3);
同理可求得B3
3
3
2
,-
9
2
),A2A3=3,A3(0,-6);

依此类推,当A100时,A99A100=100,
点A100纵坐标的绝对值=1+2+3+…+100=5050,
故A100(0,-5050).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+b,与抛物线y=ax2交于A(1,m),B(-2,4)+y轴交与点C.
(1)求抛物线的解析式;
(2)求S△AOB
(3)求
BC
AC
的值;
(4)判断点A是否在以BO为直径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图一次函数y=
1
2
x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=
1
2
x2+bx+c的图象与一次函数y=
1
2
x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过点B(-2,3),原点O和x轴上另一点A,它的对称轴与x轴交于点C(2,0).
(1)求此抛物线的函数关系式;
(2)连接CB,在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
(3)在(2)的条件下,连接BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+3经过点A(1,0)和B(3,0),点C(m,
15
)在抛物线的对称轴上.
(1)求抛物线的函数表达式.
(2)求证:△ABC是等腰三角形.
(3)动点P在线段AC上,从点A出发以每钞1个单位的速度向C运动,同时动点Q在线段AB上,从B出发以每秒1个单位的速度向A运动.当Q到达点A时,两点同时停止运动.设运动时间为t秒,求当t为何值时,△APQ与△ABC相似.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2).
(1)请在给出的直角坐标系xOy中画出△ABC,设AC交X轴于点D,连接BD,证明:OD平分∠ADB;
(2)请在x轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;图2为二次函数y=ax2(a>0)的图象.
(1)如图l,求证:
AB
CD
=
1
2

(2)如图2,探索:
AB
CD
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中,矩形OABC的对角线AC所在直线解析式为y=-
3
3
x+1.
(1)在x轴上存在这样的点M,使AMB为等腰三角形,求出所有符合要求的点M的坐标;
(2)动点P从点C开始在线段CO上以每秒
3
个单位长度的速度向点O移动,同时,动点Q从点O开始在线段OA上以每秒1个单位长度的速度向点A移动.设P、Q移动的时间为t秒.
①是否存在这样的时刻2,使△OPQ与△BCP相似,并说明理由;
②设△BPQ的面积为S,求S与t间的函数关系式,并求出t为何值时,S有最小值.

查看答案和解析>>

同步练习册答案