【题目】对于抛物线y=ax2+bx+c(a≠0),有下列说法:
①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);
②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;
③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
其中正确的有 .
【答案】①③④
【解析】
试题分析:利用二次函数的性质以及抛物线与x轴的交点坐标逐一分析得出答案即可.
解:①抛物线y=ax2+bx+c一定经过一个定点(﹣1,0),则0=a﹣b+c,即b=a+c,此选项成立成立;
②方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,当c=0时,cx2+bx+a=0不成立,即抛物线y=cx2+bx+a与x轴必有两个不同的交点不成立;
③当b=2a+3c,则b2﹣4ac=(2a+3b)2﹣4ac=4a2+8ac+9b2=4(a+c)2+5c2,而a≠0,于是b2﹣4ac>0,则方程必有两个不相等的实数根;
④当a>0,b>a+c,则b2﹣4ac<(a+c)2﹣4ac=(a﹣c)2>0,则抛物线y=ax2+bx+c与x轴必有两个不同的交点,结论成立.
正确的结论是①③④.
故答案为:①③④.
科目:初中数学 来源: 题型:
【题目】将正整数1,2,3,4……按以下方式排列
1 4 → 5 8 → 912 → ……
↓ ↑ ↓ ↑ ↓ ↑
2 → 36 → 7 10 → 11
根据排列规律,从2010到2012的箭头依次为
A. ↓ → B. → ↓ C. ↑ → D. → ↑
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级1班举办迎元旦庆新年歌咏会,购买了一些笔记本作为纪念品,若参加表演的同学每人分3本,则剩6本;若参加表演的同学每人分4本,则还差2本,问:
(1)这个班共有多少名学生参加表演?
(2)购买的笔记本共有多少本?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车厂要在预定期限内生产一批汽车,若按原计划每天生产20辆,则差100辆不能完成任务.现在每天生产25辆,结果比原计划多生产50辆,求原计划生产多少辆?预定期限多少天?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com