精英家教网 > 初中数学 > 题目详情

【题目】如图,一枚运载火箭从距雷达站C5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求ACAB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)

【答案】AC= 6.0km,AB= 1.7km;

【解析】

RtAOC, 由∠的正切值和OC的长求出OA, RtBOC, 由∠BCO的大小和OC的长求出OA,AB=OB-0A,即可得到答案。

由题意可得:∠AOC=90°,OC=5km.

RtAOC中,

AC=

AC=≈6.0km,

tan34°=

OA=OCtan34°=5×0.67=3.35km,

RtBOC中,∠BCO=45°,

OB=OC=5km,

AB=5﹣3.35=1.65≈1.7km.

答:AC的长为6.0km,AB的长为1.7km.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(),右边的刻度是华氏温度().设摄氏温度为x(℃)华氏温度为y(℉),则yx的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉

请根据以上信息,解答下列问题

(1)仔细观察图中数据,试求出yx的函数关系式;

(2)当摄氏温度为﹣5℃时,华氏温度为多少?

(3)当华氏温度为59℉时,摄氏温度为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这

个分式为和谐分式”.

1)下列分式:. 其中是和谐分式 (填写序号即可)

2)若为正整数,且和谐分式,请写出的值;

3)在化简时,

小东和小强分别进行了如下三步变形:

小东:

小强:

显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,

原因是:

请你接着小强的方法完成化简.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=90°AB=6cmAD=24cmBCCD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,ACD是以DC为斜边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且

1)求点的坐标;

2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;

3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.

(1)求y与x的函数关系式.

(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;

(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.如果点P在线段BC上以3cm/s的速度由点BC点运动,同时,点Q在线段CA上由点CA点运动.

1)若点Q的运动速度与点P的运动速度相等,经过1秒后,BPDCQP是否全等,请说明理由.

2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十字相乘法能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于xy的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1a2的积,即aa1a2,把y2项系数c分解成两个因数c1c2的积,即cc1c2,并使a1c2+a2c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).

例:分解因式:x22xy8y2

解:如图1,其中11×1,﹣8=(﹣4×2,而﹣21×2+1×(﹣4).

x22xy8y2=(x4y)(x+2y

而对于形如ax2+bxy+cy2+dx+ey+fxy的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+npbpk+qjemk+njd,即第12列、第23列和第13列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);

例:分解因式:x2+2xy3y2+3x+y+2

解:如图3,其中11×1,﹣3=(﹣1×321×2

21×3+1×(﹣1),1=(﹣1×2+3×131×2+1×1

x2+2xy3y2+3x+y+2=(xy+1)(x+3y+2

请同学们通过阅读上述材料,完成下列问题:

1)分解因式:

6x217xy+12y2   

2x2xy6y2+2x+17y12   

x2xy6y2+2x6y   

2)若关于xy的二元二次式x2+7xy18y25x+my24可以分解成两个一次因式的积,求m的值.

查看答案和解析>>

同步练习册答案