精英家教网 > 初中数学 > 题目详情

【题目】已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由 ,线段CD和线段BD所围成图形的阴影部分的面积为

【答案】2 π
【解析】解:∵OC⊥AB,∠A=∠BCD=30°,AC=2, ∴∠O=60°, =
∴AC=BC=6,
∴∠ABC=∠A=30°,
∴∠OCB=60°,
∴∠OCD=90°,
∴OC=BC=2,
∴CD= OC=2
∴线段CD和线段BD所围成图形的阴影部分的面积=SOCD﹣S扇形BOC 2×2 =2 π,
所以答案是:2 π.
【考点精析】根据题目的已知条件,利用垂径定理和扇形面积计算公式的相关知识可以得到问题的答案,需要掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,直线AB:y=﹣x+bx轴于点A(8,0),交y轴正半轴于点B.

(1)求点B的坐标;

(2)如图2,直线ACy轴负半轴于点C,AB=BC,P为线段AB上一点,过点Py轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求dt之间的函数关系式;

(3)(2)的条件下,MCA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.

(1)求抛物线的解析式;

(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;

(3)求BCE的面积最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图数轴上A、B、C三点对应的数分别是a、b、7,满足OA=3,BC=1,P为数轴上一动点,点PA出发,沿数轴正方向以每秒1.5个单位长度的速度匀速运动,点Q从点C出发在射线CA上向点A匀速运动,且P、Q两点同时出发.

(1)a、b的值

(2)P运动到线段OB的中点时,点Q运动的位置恰好是线段AB靠近点B的三等分点,求点Q的运动速度

(3)P、Q两点间的距离是6个单位长度时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.

(1)判断BEC的形状,并说明理由?

(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;

(3)求四边形EFPH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荆岗中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.
(1)m= , n=
(2)请补全图中的条形图;
(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球;
(4)在抽查的m名学生中,喜爱乒乓球的有10名同学(其中有4名女生,包括小红、小梅),现将喜爱打乒乓球的同学平均分成两组进行训练,且女生每组分两人,求小红、小梅能分在同一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,PCD上一点,

(1)过点PAB的垂线段PE;

(2)过点PCD的垂线,与AB相交于点F;

(3)将线段PE、PF、FO从小到大排列为_____,这样排列的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的对角线相交于O,给出下列 5个条件:ABCD ;ADBC;AB=CD ;④∠BAD=BCD;OA=OC.从以上5个条件中任选 2个条件为一组,能推出四边形ABCD为平行四边形的有(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

同步练习册答案