精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C点,tan∠ABC=2.
(1)求抛物线的表达式及其顶点D的坐标;
(2)过点A、B作x轴的垂线,交直线CD于点E、F,将抛物线沿其对称轴向上平移m个单位,使抛物线与线段EF(含线段端点)只有1个公共点.求m的取值范围.

【答案】
(1)解:由抛物线的表达式知,点C(0,8),即 OC=8;

Rt△OBC中,OB=OCtan∠ABC=8× =4,

则点B(4,0).

将A、B的坐标代入抛物线的表达式中,

得:

解得:

∴抛物线的表达式为y=﹣x2+2x+8,

∵y=﹣x2+2x+8=﹣(x﹣1)2+9,

∴抛物线的顶点坐标为D(1,9)


(2)解:设直线CD的表达式为y=kx+8,

∵点D(1,9),

∴直线CD表达式为y=x+8.

∵过点A、B作x轴的垂线,交直线CD于点E、F,

可得:E(﹣2,6),F(4,12).

设抛物线向上平移m个单位长度(m>0),

则抛物线的表达式为:y=﹣(x﹣1)2+9+m;

当抛物线过E(﹣2,6)时,m=6,

当抛物线过F(4,12)时,m=12,

∵抛物线与线段EF(含线段端点)只有1个公共点,

∴m的取值范围是6<m≤12


【解析】(1)由OC=8、tan∠ABC=2得点B坐标,将点A、B坐标代入求解可得;(2)先求出直线CD解析式和点E、F坐标,设平移后解析式为y=﹣(x﹣1)2+9+m,结合图象根据抛物线与线段EF(含线段端点)只有1个公共点,求得临界时m的值,从而得出答案,
【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(
A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少
C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油
D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EPCD交于点G,点HMN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,KGH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么ABP的面积与点P运动的路程之间的函数图象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBC于点BDCBC于点CDE平分∠ADCBC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF

(1)求证:∠DAF=∠F

(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).

(1)写出yx之间的函数关系式;

(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.

例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A, C的“联盟点”.

1)若点A表示数-2, 点B表示的数2,下列各数,0,4,6所对应的点分别C1C2 C3 C4,其中是点A,B的“联盟点”的是

(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:

①若点P在点B的左侧,且点P是点A, B的“联盟点”,求此时点P表示的数;

②若点P在点B的右侧,点PA, B中,有一个点恰好是其它两个点的“联盟点”,写出此时点P表示的数 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2).

(1)m,n的值;

(2)请结合图象直接写出不等式mx+n>x+n-2的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边ABACCB的延长线于点DEF

1)求证:∠F+∠FEC=2∠A

2)过B点作BM∥ACFD于点M,试探究∠MBC∠F+∠FEC的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案