精英家教网 > 初中数学 > 题目详情
6.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=1:20.

分析 根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果.

解答 解:∵S△BDE:S△DEC=1:4,
∴BE:EC=1:4,
∴BE:BC=1:5,
∵DE∥AC,
∴△BED∽△BCA,
∴$\frac{{S}_{△BED}}{{S}_{△BCA}}$=${(\frac{BE}{BC})}^{2}$=$\frac{1}{25}$,
设S△BED=k,则S△DEC=4k,S△ABC=25k,
∴S△ADC=20k,
∴S△BDE:S△DCA=1:20.
故答案为:1:20.

点评 本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,AB⊥BC,AD⊥CD,AB=AD=6,∠BAD=60°.
(1)证明:BC=CD;并求BC的长;
(2)设点E、F分别是AB、AD边上的中点,连结EF、EC、FC,求△CEF三边的长和cos∠ECF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知:E、F分别是矩形ABCD的边AD、CD上一点,且DF=CF,∠DEF=2∠CBF.若AB=4,BC=6,则AE=$\frac{10}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若$\frac{EF}{BE}=\frac{2}{3}$,那么$\frac{GE}{BE}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,点A是反比例函数y=$\frac{5\sqrt{3}}{x}$(x>0)图象上一点,点B是x轴正半轴上一点,点C的坐标为(0,2),当△ABC是等边三角形时,点A的坐标为($\frac{3\sqrt{3}}{5}$,$\frac{25}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,用边长为4和2的正方形拼成如图所示图形,则图中阴影部分的面积为$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.南京青奥会开幕在即,某服装店老板小陈用3600元购进甲乙两款运动服,很快售完.小陈再次去购进同款、同数量的服装时,他发现甲、乙俩款服装的进价分别上涨了20元/件、5元/件,结果比上次多花了400元.设小陈每次购买甲服装x件,乙服装y件.
(1)请直接写出y与x之间的函数关系式:y=-4x+80.
(2)小陈经计算后发现,第二次进货时甲、乙两款服装的平均单价比第一次上涨了8元.
①求x、y的值.
②第二次所购进的服装全部卖出后获利35%,小陈带着这批服装的全部销售款再去进货,这时两款服装均恢复了最初的进价,于是小陈花了3000元购买乙服装,其余钱款全部购买甲服装,结果所购进甲、乙两款服装数量恰好相等.问:这次小陈共购买了多少件服装?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知正方形OABC的边长为4,顶点A、C分别在x、y轴的正半轴上,M是BC的中点,点P(0,m)是线段oc上的一动点9点P不与点O、C重合0,直线PM交AB的延长线于点D.
(1)求点D的坐标;(用含m的代数式表示)
(2)若△APD是以AP边为一腰的等腰三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知关于x的不等式组$\left\{\begin{array}{l}{x-a>0}\\{3-x>0}\end{array}\right.$的整数解共有4个,则a的取值范围是-2≤a<-1.

查看答案和解析>>

同步练习册答案