分析 根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果.
解答 解:∵S△BDE:S△DEC=1:4,
∴BE:EC=1:4,
∴BE:BC=1:5,
∵DE∥AC,
∴△BED∽△BCA,
∴$\frac{{S}_{△BED}}{{S}_{△BCA}}$=${(\frac{BE}{BC})}^{2}$=$\frac{1}{25}$,
设S△BED=k,则S△DEC=4k,S△ABC=25k,
∴S△ADC=20k,
∴S△BDE:S△DCA=1:20.
故答案为:1:20.
点评 本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com