精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=kx+bx轴于点A(10) ,与双曲线 交于点

1)求直线AB的解析式为____ ____________

2)若 x 轴上存在动点 Mm0),过点 M 且与 x 轴垂直的直线与直线AB交于点C,与双曲线交于点D(CD两点不重合),当BC >BD时,写出m的取值范围_____________

【答案】1y=-x+1;(2m<-2__ m>2

【解析】

1)将点B-1a)代入,求出a,再将AB两点的坐标代入y=kx+b,利用待定系数法即可求出直线AB的解析式;

2)过点BBECD于点E.根据三角形中,两条边在第三边上的射影长之间关系,若存在动点M(m,0),满足BC>BD,则有CE>DE. 由题意得出Cm-m+1),Dm),根据点E与点B的纵坐标相同得到E(m,2),得到CE= DE=,列不等式,分CD的上方和CD的下方两种情况,数形结合,解不等式即可得其范围.

解:(1)∵点B-1a)在双曲线上,

a=2

B-12).

又∵直线y=kx+b过点AB

解得

∴直线AB的解析式为:y=-x+1

2

过点BBECD于点E

BC>BD

CE>DE

由题意可知,Cm-m+1),Dm,Em2),

CE= DE=

>

m>0时,>,解得m>2

m<0时,由图可知,m<-1,<-(),解得m<-2

综上:m<-2 m>2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(40),点B的坐标为(100),点C为平面上一动点,连接CACB,将线段CB绕点C逆时针旋转90°得到线段CD,当AC4,线段AD的长取最大值时,点D的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为的小明的影子长是,而小颖刚好在路灯灯泡的正下方点,并测得

1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置

2)求路灯灯泡的垂直高度

3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,请在图中画出此时小明的影长B1C1,并求B1C1的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象经过点,对称轴为直线,下列5个结论:,其中正确的结论为________________.(注:只填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点AB分别在反比例函数的图象上,且OAOB 的值为 ____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,已知上一点,且的平分线交于点AD上的动点,连结,则的最小值是( )

A. 8B. 10C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小婷在放学路上,看到隧道上方有一块宣传中国﹣南亚博览会的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点内的定点且,若点分别是射线上异于点的动点,则周长的最小值是(  )

A.B.C.6D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

同步练习册答案