【题目】已知直线y=kx+b交x轴于点A(1,0) ,与双曲线 交于点
(1)求直线AB的解析式为____ ____________;
(2)若 x 轴上存在动点 M(m,0),过点 M 且与 x 轴垂直的直线与直线AB交于点C,与双曲线交于点D(C、D两点不重合),当BC >BD时,写出m的取值范围_____________.
【答案】(1)y=-x+1;(2)m<-2_或_ m>2
【解析】
(1)将点B(-1,a)代入,求出a,再将A、B两点的坐标代入y=kx+b,利用待定系数法即可求出直线AB的解析式;
(2)过点B作BE⊥CD于点E.根据三角形中,两条边在第三边上的射影长之间关系,若存在动点M(m,0),满足BC>BD,则有CE>DE. 由题意得出C(m,-m+1),D(m,),根据点E与点B的纵坐标相同得到E(m,2),得到CE= , DE=,列不等式,分C在D的上方和C在D的下方两种情况,数形结合,解不等式即可得其范围.
解:(1)∵点B(-1,a)在双曲线上,
∴a=2,
∴B(-1,2).
又∵直线y=kx+b过点A、B,
∴,
解得,
∴直线AB的解析式为:y=-x+1;
(2)
过点B作BE⊥CD于点E.
∵BC>BD,
∴CE>DE
由题意可知,C(m,-m+1),D(m,),E(m,2),
CE=, DE=,
∴ >
当m>0时,>,解得m>2,
当m<0时,由图可知,m<-1,又<-(),解得m<-2
综上:m<-2或 m>2
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(10,0),点C为平面上一动点,连接CA,CB,将线段CB绕点C逆时针旋转90°得到线段CD,当AC=4,线段AD的长取最大值时,点D的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为的小明的影子长是,而小颖刚好在路灯灯泡的正下方点,并测得.
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置;
(2)求路灯灯泡的垂直高度;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,请在图中画出此时小明的影长B1C1,并求B1C1的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①; ②; ③;④; ⑤,其中正确的结论为________________.(注:只填写正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com