精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AD是BC边上的高,AO的延长线交⊙O于点E.已知AB=数学公式,AC=数学公式,则AE•AD=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:首先连接BE,由AE是⊙O的直径,AD是BC边上的高,可得∠ABE=∠ADC=90°,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠E=∠C,即可证得△ABE∽△ADC,然后由相似三角形的对应边成比例,即可求得答案.
解答:解:连接BE,
∵AE是⊙O的直径,AD是BC边上的高,
∴∠ABE=∠ADC=90°,
∵∠E=∠C,
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∵AB=,AC=
∴AE•AD=AB•AC=×=3
故选A.
点评:此题考查了相似三角形的判定与性质与圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案