精英家教网 > 初中数学 > 题目详情
6.在平面直角坐标系xOy中,抛物线y=mx2-4mx+4m+3的顶点为A.
(1)求点A的坐标;
(2)将线段OA沿x轴向右平移2个单位长度得到线段O′A′.
①直接写出点O′和A′的坐标;
②若抛物线y=mx2-4mx+4m+3与四边形AOO′A′有且只有两个公共点,结合函数的图象,求m的取值范围.

分析 (1)将抛物线解析式配成顶点式,即可得出顶点坐标;
(2)根据平移的性质即可得出结论;
(3)结合图象,判断出抛物线和四边形AOO'A'只有两个公共点的分界点即可得出;

解答 解:(1)∵y=mx2-4mx+4m+3=m(x2-4x+4)+3=m(x-2)2+3,∴
∴抛物线的顶点A的坐标为(2,3).
(2)由(1)知,A(2,3),
∵线段OA沿x轴向右平移2个单位长度得到线段O′A′.
∴A'(4,3),O'(2,0);
   (3)如图,

∵抛物线y=mx2-4mx+4m+3与四边形AOO′A′有且只有两个公共点,
∴m<0.
由图象可知,抛物线是始终和四边形AOO'A'的边O'A'相交,
∴抛物线已经和四边形AOO′A′有两个公共点,
∴将(0,0)代入y=mx2-4mx+4m+3中,得m=-$\frac{3}{4}$.
∴-$\frac{3}{4}$<m<0.

点评 此题是二次函数综合题,主要考查了配方法,平移的性质,抛物线的性质,解本题的关键是借助图象找出只有两个公共点的分界点,是一道比较简单的题目,画出图象是解本题的难点,用数形结合的方法,有助于学生理解和找到分界点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.已知关于x的分式方程$\frac{3x}{x-6}$-2=$\frac{m}{x-6}$的解是正数,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,后求值.
2(a2b+ab2)-(2ab2-1+a2b)-2,其中(2b-1)2+|a+2|=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,AD⊥BC,垂足为D,AD=4,BD=2,CD=8.
(1)求证:∠BAC=90°;
(2)P为BC边上一点,连接AP,若△ABP为等腰三角形,请求出BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,-2),反比例函数y=$\frac{k}{x}$的图象经过点C,一次函数y=ax+b的图象经过A、C两点.
(1)求反比例函数与一次函数的解析式;
(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)因式分解:1-4x2+4xy-y2
(2)化简求值:(1+$\frac{2}{p-2}$)÷$\frac{{p}^{2}-p}{{p}^{2}-4}$,其中-3<p<3且p为整数,请从p的以上范围中任选一数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC
(1)求证:△ABE≌△DCE;
(2)若∠A=90°,AC=16,AB=8,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解不等式组$\left\{\begin{array}{l}{3(x-1)≥-2(x+9)}\\{1-(x-2)>\frac{1-x}{3}}\end{array}\right.$,并求出它的所有非负整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.
(1)出发3秒后,AM=3,PB=18.(不必说明理由)
(2)出发几秒后,AP=3BP?
(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MA+PN的值不变;②MN长度不变,选择一个正确的结论,并求出其值.

查看答案和解析>>

同步练习册答案