精英家教网 > 初中数学 > 题目详情
9.(1)计算:|-3|+$\sqrt{3}$tan30°-$\sqrt{12}$-(2016-π)0
(2)先化简,再求值:$\frac{2a+1}{{a}^{2}-1}$•$\frac{{a}^{2}-2a+1}{{a}^{2}-a}$-$\frac{1}{a+1}$,其中a=-$\frac{1}{2}$.

分析 (1)原式利用绝对值的代数意义、特殊角的三角函数值、二次根式的性质以及零指数幂的意义计算即可得到结果;
(2)可先把分式化简,再把a的值代入计算求值.

解答 解:(1)|-3|+$\sqrt{3}$tan30°-$\sqrt{12}$-(2016-π)0
=3+$\sqrt{3}$×$\frac{\sqrt{3}}{3}$-2$\sqrt{3}$-1
=3+1-2$\sqrt{3}$-1
=3-2$\sqrt{3}$;

(2)$\frac{2a+1}{{a}^{2}-1}$•$\frac{{a}^{2}-2a+1}{{a}^{2}-a}$-$\frac{1}{a+1}$
=$\frac{2a+1}{(a+1)(a-1)}$•$\frac{(a-1)^{2}}{a(a-1)}$-$\frac{1}{a+1}$
=$\frac{2a+1}{a(a+1)}$-$\frac{1}{a+1}$
=$\frac{2a+1-a}{a(a+1)}$
=$\frac{1}{a}$,
当a=-$\frac{1}{2}$时,原式=-2.

点评 此题考查分式的混合运算及特殊角的函数值,关键是先把分式化简.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,已知△ABC,用尺规作出BC边上的高AD(保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,正比例函数y=-2x与反比例函数$y=\frac{k}{x}$的图象在第二象限交于点A(-1,m),将函数y=-2x的图象向下平移3个单位长度与反比例函数$y=\frac{k}{x}$的图象分别交于B、C两点,连结AB,AC.
(1)求反比例函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.从背面相同的同一副扑克牌中取出红桃9张,黑桃10张,方块11张,现将这些牌洗匀背面朝上放桌面上.
(1)求从中抽出一张是红桃的概率;
(2)现从桌面上先抽掉若干张黑桃,再放入与抽掉的黑桃张数相同的红桃,并洗匀且背面都朝上排开后,随机抽一张是红桃的概率不小于$\frac{2}{5}$,问至少抽掉了多少张黑桃?
(3)若先从桌面上抽掉9张红桃和m(m>6)张黑桃后,再在桌面上抽出一张牌,当m为何值时,事件“再抽出的这张牌是方块”为必然事件?当m为何值时,事件“再抽出的这张牌是方块”为随机事件?并求出这个事件的概率的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D=45°,则∠AEC=(  )
A.35°B.45°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:$\frac{{x}^{2}+2x+1}{{x}^{2}-1}$-$\frac{x}{x-1}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.$\sqrt{8}$+($\frac{1}{3}$)-1+|$\sqrt{2}-2$|-2cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若斜坡AF的坡度i=1:$\sqrt{3}$,则大树的高度为(  )(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,$\sqrt{3}$≈1.732)
A.11米B.12米C.13米D.14米

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:$\frac{4}{{a}^{2}-1}$+$\frac{2}{1-a}$下面是这道题完整的解题步骤
解:$\frac{4}{{a}^{2}-1}$+$\frac{2}{1-a}$=$\frac{4}{(a+1)(a-1)}$-$\frac{2}{a-1}$     (A)
=$\frac{4}{(a+1)(a-1)}$-$\frac{2(a+1)}{(a-1)(a+1)}$                          (B)
=$\frac{4-2(a+1)}{(a-1)(a+1)}$                                                      (C)
=$\frac{-2a+2}{(a-1)(a+1)}$
=-$\frac{2}{a+1}$                                                               (D)
回答下列问题:
(1)步骤A的名称是因式分解
(2)步骤B变形的依据是分式的基本性质
(3)步骤C的名称是分式的加减法
(4)步骤D的名称是约分,这步变形的依据是分式的基本性质.

查看答案和解析>>

同步练习册答案