精英家教网 > 初中数学 > 题目详情

如图所示中,是中心对称图形的个数有

[  ]

A.1个
B.2个
C.3个
D.4个
答案:B
解析:

是中心对称图形的有两个,分别是:


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

朝晖初中的科技活动搞得有声有色.某班的小赵对跨湖桥博物馆富有创意的独木舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成独木舟模型.如图所示,该正五边形ABCDE中,O为中心,延长AO交CD于点M.若OM长为
6
,AN为独木舟船头A到船底的距离,为了计算AN+
1
2
AM
的值,小赵所在的科技小组进行了热烈的讨论:
小王:AM显然是此正五边形的对称轴.
小李:AN与AM似乎无法直接求出,应该用整体思想来求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,则AM与AN可看成是三角形的高,能否利用面积法来求呢?
小杨:若将点O与正五边形的各顶点连接,则将此正五边形的面积五等分…精英家教网
在这些同学的提示下,小赵求出了AN+
1
2
AM
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.
(1)小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:
①ME=MA;
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变.
请你对这三个猜想作出判断(正确的在序号后的括号内打上“√”,错误的打上“×”):
①(  );②(  );③(  )
(2)小组成员还发现:(1)中的△EMN的面积S随着旋转角度∠AOE的变化而变化.请你指出在怎样的位置时△EMN的面积S取得最大值.(不必证明)
(3)上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鄞州区模拟)在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.
(1)小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:
①ME=MA
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变.
请你对这三个猜想做出判断(正确的在序号后的括号内打上“√”,错误的打上“×”):
  ②
×
×
 ③

(2)上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一说明理由.
(3)小组成员还发现:(1)中的△ENN的面积S随着旋转角度∠AOE的变化而变化.请你指出当旋转角∠AOE为多少度时△ENN的面积S取得最大值.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:
①ME=MA;
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变;
④△EMN的面积S随着旋转角度∠AOE的变化而变化.当旋转角∠AOE为45°时△ENN的面积S取得最大值.
请你对这四个猜想作出判断,把正确的猜想序号写在横线上
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:

①ME=MA
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变.
④△EMN的面积S随着旋转角度∠AOE的变化而变化.当旋转角∠AOE为45°时△ENN的面积S取得最大值.
请你对这四个猜想作出判断,把正确的猜想序号写在横线上             

查看答案和解析>>

同步练习册答案