精英家教网 > 初中数学 > 题目详情

正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于           

 

【答案】

【解析】

试题分析:如图,

∵FH∥CD,

∴∠BHF=∠C=90°(同位角相等);

在△BFH和△BDC中,

∴△BFH∽△BDC,

=

同理,得=

又∵AD=CD,

∴GF=FH,

∵∠BGF=∠BHF=90°,BF=BF,

∴△BGF≌△BHF,

∴S△BGF=S△BHF

同理,求得多边形GFEJ与多边形HFEI的面积相等,多边形JEDA与多边形IEDC的面积相等,

∴图中阴影部分的面积是正方形ABCD面积的一半,即=

考点:正方形的性质;相似三角形的判定与性质.

点评:解答本题时主要运用了正方形的性质,相似三角形的判定以及相似三角形的性质.所以,在以后的解题中合理的利用已学的定理与性质会降低题的难度.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD边长为2cm,以点B为圆心,AB的长为半径作弧
AC
,则图中阴影部分的面积为(  )
A、(4-π)cm2
B、(8-π)cm2
C、(2π-4)cm2
D、(π-2)cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD边长为2,点E在CB的延长线上,BD=BE,则tan∠BAE的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD边长为4cm,E,F分别为CD,BC的中点,动点P在线段AB上从B?A以2cm/精英家教网s的速度运动,同时动点Q在线段FC上从F?C以1cm/s的速度运动,动点G在PC上,且∠EGC=∠EQC,连接PD.设运动时间为t秒.
(1)求证:△CQE∽△APD;
(2)问:在运动过程中CG•CP的值是否发生改变?如果不变,请求这个值;若改变,请说明理由;
(3)当t为何值时,△CGE为等腰三角形并求出此时△CGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;
(3)梯形ABCN的面积是否可能等于11?为什么?

查看答案和解析>>

同步练习册答案