【题目】如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、C,若点B的坐标为(6,0),tan∠ABC=.
(1)若点P是⊙A 上的动点,求P到直线BC的最小距离,并求此时点P的坐标;
(2)若点A从原点O出发,以1个单位/秒的速度沿着线路OB→BC→CO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t.
①求⊙A在整个运动过程中与坐标轴相切时t的取值;
②求⊙A在整个运动过程中所扫过的图形的面积为 .
【答案】(1),最小距离为3.8;(2)①1、、、、、23;②42+
【解析】
试题分析:(1)利用点B的坐标为(6,0)且tan∠ABC=,即可得出C点坐标,进而利用△OPH∽△CBO,求出P点坐标即可;
(2)①利用⊙A在整个运动过程中所扫过的面积=矩形DROC面积+矩形OYHB面积+矩形BGFC面积+△ABC面积+一个圆的面积-△LSK面积,求出即可;
②利用相似三角形的判定与性质得出t的值即可,注意利用数形结合得出.
(1)∵点B的坐标为(6,0)且tan∠ABC=
∴AC=8,
故C点坐标为:C(0,8),
∴BC=10,
过O作OG⊥BC于G,则OG与⊙A的交点即为所求点P.过P作PH⊥x轴于H,
∵PH⊥AB,
∴∠OHP=90°,
∵∠POH+∠COP=90°,∠POC+∠OCG=90°,
∴∠POH=∠OCG,
又∵∠COB=90°,
∴△OPH∽△CBO,
可得,
∴;
(2)①如图所示:⊙A与△OBC的三边相切有6种不同的情况,
当⊙O2与BC相切于点N,则O2N⊥BC,
∵∠OBC=∠O2BN,∠O2NB=∠COB=90°,
∴△O2NB∽△COB,
解得
则,则t的值为秒,
同理可得出:O,O4,O5的位置,即可得出时间t的值,
故t=1、、、、、23;
②如图2所示:当圆分别在O,B,C位置时,作出公切线DR,YH,FG,PW,切点分别为:D,R,H,G,F,P,W
连接CD,CF,BG,过点K作KX⊥BC于点X,PW交AB于点U,
∵PU∥OB,
∴∠OBC=∠KUX,
∵∠KXU=∠COB=90°,
∴△COB∽△KXU,
∵PU∥BO,
∴△CPU∽△COB,
同理可得出:△LSK∽△COB,
解得:LS=4,
则∠CDR=∠CFG=∠BGF=∠BHY=∠AYH=90°,
故⊙A在整个运动过程中所扫过的面积
=矩形DROC面积+矩形OYHB面积+矩形BGFC面积+△ABC面积+一个圆的面积-△LSK面积,
=42+.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB =AC=2,∠B = 40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE = 40°,DE交线段AC于点E.
(1)当∠BDA = 115°时,∠BAD= °,∠DEC = °,当点D从点B向点C运动时,∠BDA逐渐变 (填“大”或“小”) .
(2)当DC等于多少时,△ABD≌△DCE?请说明理由.
(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有长为1cm、2cm、3cm、4cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE.
(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣x﹣6.
(1)画出函数的图象;
(2)观察图象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;
(3)求二次函数的图象与坐标轴的交点所构成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠BAD =60,AC交BD于点O,以点D为圆心的⊙D与边AB相切于点E.
(1)、求AC的长;(2)、求证:⊙D与边BC也相切
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,适宜采用全面调查方式的是( )
A. 调查春节联欢晚会在武汉市的收视率
B. 了解全班同学参加社会实践活动的情况
C. 调查某品牌食品的色素含量是否达标
D. 了解一批手机电池的使用寿命
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com