精英家教网 > 初中数学 > 题目详情
已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于(  )
分析:连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.
解答:解:连接OA,OB,
∵PA、PB切⊙O于点A、B,
∴∠PAO=∠PBO=90°,
由圆周角定理知,∠AOB=2∠ACB=130°,
∴∠APB=360°-∠PAO-∠PBO-∠AOB=360°-90°-90°-130°=50°.
故选B.
点评:本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=2PB,求
PAPB
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,
(1)若∠AOP=60°,求∠OPB的度数;
(2)过O作OC、OD分别交AP、BP于C、D两点,
①若∠COP=∠DOP,求证:AC=BD;
②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,PA切⊙O于A,△ABC为⊙O的内接三角形,CA∥EP,AB、CB的延长线分别交DP精英家教网于点D、E.
(1)求证:DE•DP=DA•DB.
(2)若AB=4,AC=6,DB=3,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.求⊙O的半径长.

查看答案和解析>>

同步练习册答案