【题目】如图,在每个小正方形的边长为1的网格中,,,为格点,为小正方形边的中点.
(1)的长等于_________;
(2)点,分别为线段,上的动点,当取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段,,并简要说明点和点的位置是如何找到的(不要求证明).
【答案】(1)5;(2)见解析
【解析】
(1)直接利用勾股定理计算可得;
(2)令BC与网格交于P,再分别取网格线中点G和H,连接,与AC交于Q,从而可得.
解:(1)由图可得:
AC=,
故答案为:5;
(2)如图,与网格线相交,得点;取格点,,连接,与网格线相交,得点,取格点,,连接,与网格线相交,得点,连接,与相交,得点.连接,.线段,即为所求.
如图,延长DP,交网格线于点T,连接AB,GH与DP交于点S,
由计算可得:AB=,BC=,AC=5,
∴△ABC为直角三角形,∠ABC=90°,
∴tan∠ACB=2,
∵tan∠BCT=PT:TC=2,
∴∠ACB=∠BCT,即BC平分∠ACT,
根据画图可知:GH∥BC,
∴∠ACB=∠CQH,∠BCT=∠GHC,
∵∠BCT=∠BCA,
∴∠CQH=∠GHC,
∴CQ=CH,
由题意可得:BS=CH,
∴BS=CQ,
又∵BP=CP,∠PBS=∠PCQ,
∴△BPS≌△CPQ,
∴∠PSB=∠PHC=90°,即PQ⊥AC,
∴PD+PQ的最小值即为PD+PT,
∴所画图形符合要求.
科目:初中数学 来源: 题型:
【题目】问题情境:
我们知道若一个矩形的周长固定,当相邻两边相等,即为正方形时,面积是最大的,反过来,若一个矩形的面积固定,它的周长是否会有最值呢?
方法探究:
用两条直角边分别为、的四个全等的直角三角形,可以拼成一个正方形,
若,可以拼成如图1的正方形,从而得到,即;
若,可以拼成如图2的正方形,从而得到,即.
于是我们可以得到结论:,为正数,总有,且当时,代数式取得最小值为.
另外,我们也可以通过代数式运算得到类似上面的结论.
∵,
∴,,
∴对于任意实数,,总有,
且当时,代数式取得最小值为.
类比应用:
(1)对于正数,,试比较和的大小关系,并说明理由.
(2)填空:
当时,________.
代数式有最________值为________.
问题解决:
(3)若一个矩形的面积固定为,它的周长是否会有最值呢?若有,求出周长的最值,及此时矩形的长和宽;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数()的图象与直线交于点.
(1)求、的值;
(2)已知点在直线()上运动设点坐标为,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数()的图象于点.
①当时,判断线段与的数量关系,并说明理由;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=4,点P是CB边上的一点,且tan∠PAC=,⊙O是△APB的外接圆.
(1)求证:∠PAC=∠ABC;
(2)求证:AC是⊙O的切线;
(3)求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,正方形与正方形有公共的顶点,连接,,,.
①求证:;
②求的值;
(2)将图1中的正方形旋转到图2的位置,当,,在一条直线上,若,求正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,为的中点,一块足够大的三角板的直角顶点与点重合,将三角板绕点旋转,三角板的两直角边分别交或它们的延长线)于点,设,下列四个结论:①;②; ③;④,正确的个数是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知:点A(﹣4,0),B (0,3)分别是x、y轴上的两点.
(1)用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)
(2)求出⊙P向上平移几个单位后与x轴相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图8,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初三(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为、、、四类.其中,类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.
“垃圾分类”知晓情况各类别人数条形统计图 “垃圾分类”知晓情况各类别人数扇形统计图
根据以上信息解决下列问题:
(1)初三(1)班参加这次调查的学生有______人,扇形统计图中类别所对应扇形的圆心角度数为______°;
(2)求出类别的学生数,并补全条形统计图;
(3)类别的4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com