精英家教网 > 初中数学 > 题目详情

【题目】我市某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,乙团队人数不超过40人.设甲团队人数为人,如果甲、乙两团队分别购买门票,两团队门票款之和为元.

1)直接写出关于的函数关系式,并写出自变的取值范围;

2)若甲团队人数不超过80人,计算甲、乙两团队联合购票比分别购票最多可节约多少钱?

3)端午节之后,该风景区对门票价格作了如下调整:人数不超过40人时,门票价格不变,人数超过40人但不超过80人时,每张门票降价元;人数超过80人时,每张门票降价元.在(2)的条件下,若甲、乙两个旅行团端午节之后去游玩联合购票比分别购票最多可节约3900元,求的值.

【答案】(1)当时, ;当时,;(2)甲、乙两团队联合购票比分别购票最多可节约1800元;(3)的值为15.

【解析】

1)由乙团队人数不超过40人,讨论x的取值范围,得到分段函数;

2)由(1)在甲团队人数不超过80人时,讨论的最大值与联合购票费用相减即可;

3)在(2)的基础上在购票单价减去a元,经过讨论,得到含有a的购票最大费用,两个团队联合购票费用为100120-2a),根据题意构造方程.

解:(1)由题意乙团队人数为人,

时,

时,

2)由(1

甲团队人数不超过80

增大而减小,

∴当时,

当两团队联合购票时购票费用为

甲、乙两团队联合购票比分别购票最多可节约元.

3)在(2)的条件下

时,

增大而减小,

∴当时,

由价格方案,联合购票费用为

解得

答:的值为15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;根据以上操作,若操作300次,得到小正方形的个数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么多少餐椅,到甲商场购买更优惠?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,∠C=90°.

(1)如图1,在边BC上求作点P,使得点P到AB的距离等于点P到点C的距离.(尺规作图,保留痕迹)

(2)如图2,请利用没有刻度的直尺和圆规在线段AB上找一点F,使得点F到AC的距离等于FB(注:不写作法,保留痕迹,对图中涉及到点用字母进行标注)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°,D、F是AB边上的两点,以DF为直径的O与BC相交于点E,连接EF,过F作FGBC于点G,其中OFE=A.

(1)求证:BC是O的切线;

(2)若sinB=O的半径为r,求EHG的面积(用含r的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCDAD=12AB=9EAD的中点,GDC上一点,连接BEBGGE,并延长GEBA的延长线于点FGC=5

1)求BG的长度;

2)求证:是直角三角形

3)求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市在“元旦”活动期间,推出如下购物优惠方案:

①一次性购物在(不含)以内,不享受优惠;

②一次性购物在()以上,(不含)以内,一律享受九折优惠;

③一次性购物在()以上,一律享受八折优惠;

小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)探索发现:如图1,已知RtABC中,∠ACB90°,ACBC,直线l过点C,过点AADl,过点BBEl,垂足分别为DE.求证:ADCECDBE

2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(13),求点N的坐标.

3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3y轴交于点P,与x轴交于点Q,将直线PQP点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是将抛物线y=-x2 平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(-1,0) ,另一交点为B,与y轴交点为C.

(1)求抛物线的函数表达式;

(2)若点N 为抛物线上一点,且BCNC,求点N的坐标;

3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点PQ是否存在?若存在,分别求出点PQ的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案