精英家教网 > 初中数学 > 题目详情
7.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该种品牌玩具获得的利润为w元.
(1)请直接写出y与x,w与x的函数表达式;
(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x应定为多少元?
(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?

分析 (1)由销售单价每涨1元,就会少售出10件玩具得y=600-(x-40)×10=1000-10x,利润W=(1000-10x)(x-30)=-10x2+1300x-30000;
(2)令-10x2+1300x-30000=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=-10x2+1300x-30000转化成y=-10(x-65)2+12250,结合x的取值范围,求出最大利润.

解答 解:(1)y=600-(x-40)×10=1000-10x,
W=(1000-10x)(x-30)=-10x2+1300x-30000;
(2)-10x2+1300x-30000=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润,
(3)根据题意得
$\left\{\begin{array}{l}{1000-10x≥540}\\{x≥44}\end{array}\right.$,
解之得:44≤x≤46,
w=-10x2+1300x-30000=-10(x-65)2+12250,
∵a=-10<0,对称轴是直线x=65,
∴当44≤x≤46时,w随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.

点评 本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.作图题(不写作法)已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(-1,2),B1(-3,1),A1(-4,3);
(2)直接写出△ABC的面积为$\frac{5}{2}$;
(3)在x轴上画点P,使PA+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;

(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,D是边BC上一点,且∠ABD=∠C.
(1)求证:△ABC∽△ADB;
(2)若AB=10,AC=20,∠DBC=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E,求证:DE2=BE•CE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列命题错误的是(  )
A.相似三角形周长之比等于对应高之比
B.两个等腰直角三角形一定相似
C.各有一个角等于91°的两个等腰三角形相似
D.两边对应成比例且有一个角相等的两个三角形相似

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知二次函数y=-x2-2x+3.
(1)求它的顶点坐标和对称轴;
(2)求它与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.求比例式的值常用的方法有“设参消参法”“代入消元法”“特殊值法”.
例:已知$\frac{x}{2}$=$\frac{y}{5}$=$\frac{z}{7}$,求$\frac{x-2y+3z}{x-4y+5z}$的值.
方法1:设$\frac{x}{2}$=$\frac{y}{5}$=$\frac{z}{7}$=k,则x=2k,y=5k,z=7k,所以$\frac{x-2y+3z}{x-4y+5z}$=$\frac{2k-10k+21k}{2k-20k+35k}$=$\frac{13k}{17k}$=$\frac{13}{17}$.
方法2:由$\frac{x}{2}$=$\frac{y}{5}$=$\frac{z}{7}$,得y=$\frac{5}{2}$x,z=$\frac{7}{2}$x,代入$\frac{x-2y+3z}{x-4y+5z}$,得$\frac{x-2y+3z}{x-4y+5z}$=$\frac{x-5x+\frac{21}{2}x}{x-10x+\frac{35}{2}x}$=$\frac{\frac{13}{2}x}{\frac{17}{2}x}$=$\frac{13}{17}$.
方法3:取x=2,y=5,z=7,则$\frac{x-2y+3z}{x-4y+5z}$=$\frac{2-10+21}{2-20+35}$=$\frac{13}{17}$.
参考上面的资料解答下面的问题.
已知a,b,c为△ABC的三条边,且(a-c):(a+b):(c-b)=-2:7:1,a+b+c=24.
(1)求a,b,c的值;
(2)判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:($\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}+\frac{1}{224}+\frac{1}{288}$)×128.

查看答案和解析>>

同步练习册答案