【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
①abc<0;②a+c>0;③2a+b=0;④关于x的一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3⑤b2<4ac
A. ②③④ B. ①②③④ C. ①③④ D. ③④⑤
【答案】B
【解析】
由抛物线的开口方向判断a的符号,结合抛物线的对称轴可确定b的符号,由抛物线与y轴的交点确定c的符号,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
∵x=﹣1时,y>0,
∴a﹣b+c>0,
∴a+c>b>0,所以②正确;
∵b=﹣2a,
∴2a+b=0,所以③正确;
∵抛物线与x轴的交点坐标为(﹣1,0)和(3,0),
∴关于x的一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3,所以④正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以⑤错误,
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC.
其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;
(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,,点为的中点.如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.
(1)若点的运动速度与点的运动速度相等,经过1秒后,与是否全等,请说明理由.
(2)若点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使与全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D在△ABC的边AB上,且AD=CD,
(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);
(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.
(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(2)小明家5月份用水30吨,则他家应交水费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com