精英家教网 > 初中数学 > 题目详情
理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.
(1)设点M到CD的距离等于h,则平行四边形ABCD的面积=CD•h=100,
S△DCM=
1
2
CD•h=
1
2
×100=50;

(2)与(1)同理可得S△DCM=
1
2
×100=50;

(3)与(1)同理可得S△DCM=
1
2
×100=50;

拓展推广:
根据(1)的结论,S△ABE=
1
2
S?ABCD=
1
2
a,
S△ADF=
1
2
S?ABCD=
1
2
a,
∴阴影部分的面积=
1
2
a+
1
2
a=a;

实践应用:
设平行四边形POND的面积为x,
x
300
=
700
400

解得x=525,
根据前面信息,S△AMD=
1
2
×(525+300)=412.5,
S△MBQ=
1
2
×400=200,
S△CDQ=
1
2
×(525+700)=612.5,
∴三角形区域的面积=300+400+700+525-412.5-200-612.5=1925-1225=700m2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,点P是平行四边形ABCD内一点,已知S△PAB=7,S△PAD=4,那么S△PAC等于(  )
A.4B.3.5C.3D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在?ABCD中,E、F分别是对角线BD上的两点.且BE=DF,连接CE,AF.
求证:CE=AF.
证明:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平行四边形ABCD,AD=6,AB=8,点A的坐标为(-3,0),求B、C、D各点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在?ABCD中,已知AD=9cm,AB=7cm,∠A=120°,DE平分∠ADC交BC边于点E,则∠C=______°,BE=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,?ABCD的周长为54,AE⊥BC,AF⊥CD,且AE=4,AF=5,且∠EAF=58°,则∠BAD=______°,?ABCD面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若?ABCD边AB=6cm,AD=8cm,∠A=120°,DE平分∠ADC,则BE=______cm;∠DEC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接对角线互相垂直的四边形各边的中点得到一个四边形,对这个四边形描述最准确的是(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

同步练习册答案