【题目】为了加强居民的节水意识,合理利用水资源,某高档小区对直饮水采用价格调控手段以期待达到节水的目的,右下图是此小区对居民直饮水某月用水量x吨与水费y元的函数图象(水费按月结算).
(1)填空:
(2)若某户居民9月份用水量为9.5吨,求该用户9月份水费;
(3)若某户居民11月用水(吨),用含的代数式表示该户居民11月共应交水费Q(元).
【答案】(1)2,4,8;(2)该用户9月份水费为26元;(3)当0≤a≤6时,Q=2a;当6<a≤10时,Q=4a-12;当a>10时,Q=8a-52.
【解析】试题分析:(1)利用函数图象,用水量除以总水费可得各阶段的水费单价;
(2)9月份用水量为9.5吨,用水量超出6吨不超出10吨的部分,则前面6吨缴12元,超过的3.5吨按4元每吨缴费;
(3)分类讨论:当0≤a≤6、6<a≤10、a>10,确定11月用水量在哪个阶段,然后表示出水费即可.
试题解析:解:(1)12÷6=2,(28﹣12)÷(10﹣6)=4,(40﹣28)÷(11.5﹣10)=8,所以用水量不超出6吨时,每吨2元;用水量超出6吨不超出10吨时,每吨4元;用水量超出10吨时,每吨8元;
故答案为:2,4,8;
(2)该用户9月份水费=12+4(9.5﹣6)=26(元);
(3)11月用水a(吨).
当0≤a≤6时,Q=2a;
当6<a≤10时,Q=2×6+4(a﹣6)×4=4a-12;
当a>10时,Q=2×6+4×(10﹣6)+8(a﹣10)=8a-52.
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB边向点以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s)。当其中一点到达端点时,另一点也随之停止运动。
①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形;
②求出当t为何值时,四边形PQCD为等腰梯形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为_________时,△PEC与△QFC全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=﹣c,b=2d,且开口方向相同时,则称y1是y2的“反倍顶二次函数”.
(1)请写出二次函数y=x2+x+1的一个“反倍顶二次函数”;
(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰是y1﹣y2的“反倍顶二次函数”,求n.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.
(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?
(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下列各组数据为边长,可以构成等腰三角形的是( )
A.1cm、2cm、3cmB.3cm、 3cm、 4cm
C.1cm、3cm、1cmD.2cm、 2cm、 4cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com