精英家教网 > 初中数学 > 题目详情
如图,已知点C,D在线段AB上,M、N分别是AC、BD的中点,若AB=20,CD=4,
(1)求MN的长.
(2)若AB=a,CD=b,请用含有a、b的代数式表示出MN的长.
分析:(1)先根据线段和差的定义得出AC+DB=AB-CD=16,再由线段中点的定义,得MC=
1
2
AC,ND=
1
2
DB,则MC+DN=8,然后根据MN=MC+CD+ND即可求解;
(2)同(1),先根据线段和差的定义得出AC+DB=AB-CD=a-b,再由线段中点的定义,得MC=
1
2
AC,ND=
1
2
DB,则MC+DN=
1
2
(a-b),然后根据MN=MC+CD+ND即可求解.
解答:解:(1)∵AB=20,CD=4,
∴AC+DB=AB-CD=16.
∵M、N分别是AC、BD的中点,
∴MC=
1
2
AC,ND=
1
2
DB,
∴MC+DN=
1
2
AC+
1
2
DB=
1
2
(AC+DB)=8,
∴MN=MC+CD+DN
=(MC+DN)+CD
=8+4
=12;

(2)∵AB=a,CD=b,
∴AC+DB=AB-CD=a-b.
∵M、N分别是AC、BD的中点,
∴MC=
1
2
AC,ND=
1
2
DB,
∴MC+DN=
1
2
AC+
1
2
DB=
1
2
(AC+DB)=
1
2
(a-b),
∴MN=MC+CD+DN
=(MC+DN)+CD
=
1
2
(a-b)+b
=
a+b
2
点评:此题考查了线段中点的定义及线段的和差计算,属于基础知识,本题由第一问到第二问的设计体现了由特殊到一般,由具体到抽象的思维过程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点B、D在直线AE上,AC∥DF,∠C=∠F,AD=BE,试说明BC∥EF的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交精英家教网BD于点E,BD=8,CM=2.
(1)求⊙O的半径;
(2)求证:CE=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)试判断:四边形AECD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A,B分别在x轴和y轴上,且OA=OB=3
2
,点C的坐标是C(
7
2
2
7
2
2
)AB与OC相交于点G.点P从O出发以每秒1个单位的速度从O运动到C,过P作直线EF∥AB分别交OA,OB或BC,AC于E,F.解答下列问题:
(1)直接写出点G的坐标和直线AB的解析式.
(2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出s与t的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积.
(3)设线段OC的中点为Q,P运动的时间为t,求当t为何值时,△EFQ为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D、F在线段BC上,点E在线段BA的延长线上,EF与AC交于点G,且∠EFC=∠ADC,∠AGE=∠E.请说出AD平分∠BAC的理由.

查看答案和解析>>

同步练习册答案