Èçͼ£¬ÒÑÖªRt¡÷ABO£¬¡ÏBAO=90¡ã£¬ÒÔµãOΪ×ø±êÔ­µã£¬OAËùÔÚÖ±ÏßΪyÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬AO=3£¬¡ÏAOB=30¡ã£¬½«Rt¡÷ABOÑØOB·­Õۺ󣬵ãAÂäÔÚµÚÒ»ÏóÏÞÄڵĵãD´¦£®
£¨1£©ÇóDµã×ø±ê£»
£¨2£©ÈôÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýB¡¢DÁ½µã£¬Çó´ËÅ×ÎïÏߵıí´ïʽ£»
£¨3£©ÈôÅ×ÎïÏߵĶ¥µãΪE£¬ËüµÄ¶Ô³ÆÖáÓëOB½»ÓÚµãF£¬µãPΪÉäÏßOBÉÏÒ»¶¯µã£¬¹ýµãP×÷yÖáµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚµãM£®ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔE¡¢F¡¢M¡¢PΪ¶¥µãµÄËıßÐÎΪµÈÑüÌÝÐΣ¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
²Î¿¼¹«Ê½£ºÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¶¥µã×ø±êÊÇ£¨-Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£©£®

½â£º£¨1£©¹ýµãD×÷DE¡ÍxÖáÓÚµãE£¬Èçͼ£¨1£©£®
ÓÉ·­ÕÛ¿ÉÖª£ºDO=AO=3£¬
¡ÏAOB=¡ÏBOD=30¡ã£¬
¡à¡ÏDOE=30¡ã£®
¡àDE=
ÔÚRt¡÷CODÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
OE=
¡àD£¨£¬£©

£¨2£©ÔÚRt¡÷AOBÖУ¬
AB=AO•tan30¡ã=3¡Á=£¬
¡àB£¨£¬3£©£®
¡ßÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýB£¨£¬3£©£¬D£¨£¬£©Á½µã£¬
¡à
½âµÃ
¡à´ËÅ×ÎïÏß±í´ïʽΪy=-x2+x+3£®

£¨3£©´æÔÚ·ûºÏÌõ¼þµÄµãP£¬ÉèP£¨x£¬y£©£¬
×÷EH¡ÍPMÓÚµãH£¬FG¡ÍPMÓÚµãG£¬Èçͼ£¨2£©£®
¡ßEΪÅ×ÎïÏßy=-x2+x+3µÄ¶¥µã£¬
¡àE£¨£¬£©£®
ÉèOBËùÔÚÖ±Ïߵıí´ïʽΪy=kx£¬
½«µãB£¨£¬3£©´úÈ룬µÃk=£¬
¡ày=x£®
¡ßPÔÚÉäÏßOBÉÏ£¬
¡àP£¨x£¬x£©£¬F£¨£¬£©£®
ÔòH£¨x£¬£©G£¨x£¬£©£®
¡ßMÔÚÅ×ÎïÏßÉÏ£¬M£¨x£¬-x2++3£©£®
ҪʹËıßÐÎEFMPΪµÈÑüÌÝÐΣ¬Ö»ÐèPH=GM£®
x-=-£¨-x2+x+3£©£¬
¼´-x2+x+3+x=5£®
½âµÃx1=2£¬x2=£®
¡àP1µã×ø±êΪ£¨2£¬6£©£¬P2µã×ø±êΪ£¨£¬£©ÓëFÖغϣ¬Ó¦ÉáÈ¥£®
¡àPµã×ø±êΪ£¨2£¬6£©£®
·ÖÎö£º£¨1£©¹ýµãD×÷DC¡ÍxÖáÓÚµãE£¬Èçͼ£¨1£©£¬ÓÉÖá¶Ô³ÆµÃ³öOD=3£¬¡ÏDOE=30¡ã£¬¹Ê¿ÉÒÔÇó³öDEµÄÖµ£¬Óɹ´¹É¶¨Àí¾Í¿ÉÒÔÇó³öOEµÄÖµ£¬´Ó¶ø¿ÉÒÔÇó³öDµÄ×ø±ê£®
£¨2£©Í¨¹ý½âÖ±½ÇÈý½ÇÐÎAOBÇó³öABµÄÖµ£¬Çó³öµãBµÄ×ø±ê£¬ÔÙ½«B¡¢DµÄ×ø±ê´úÈë½âÎöʽ¾Í¿ÉÒÔÇó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨3£©ÀûÓã¨2£©µÄ½âÎöʽ£¬Çó³öEµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßOBµÄ½âÎöʽ£¬´Ó¶øÇó³öFµÄ×ø±ê£¬´Ó¶øÇó³öEF£¬ÉèP£¨x£¬y£©£¬×÷EH¡ÍPMÓÚµãH£¬FG¡ÍPMÓÚµãG£¬Èçͼ£¨2£©£¬ÓÉÌâÒâ¿ÉµÃPH=GM´Ó¶øÇó³öµãPµÄ×ø±ê£®
µãÆÀ£º±¾ÌâÊÇÒ»µÀ¶þ´Îº¯ÊýµÄ×ÛºÏÊÔÌ⣬¿¼²éÁ˵ãµÄ×ø±ê£¬´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬µÈÑüÌÝÐεÄÅж¨¼°ÐÔÖʼ°½âÖ±½ÇÈý½ÇÐεÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

22¡¢Èçͼ£¬ÒÑÖªRt¡÷ABC£¬AB=AC£¬¡ÏABCµÄƽ·ÖÏßBD½»ACÓÚµãD£¬BDµÄ´¹Ö±Æ½·ÖÏß·Ö±ð½»AB£¬BCÓÚµãE¡¢F£¬CD=CG£®
£¨1£©ÇëÒÔͼÖеĵãΪ¶¥µã£¨²»Ôö¼ÓÆäËûµÄµã£©·Ö±ð¹¹ÔìÁ½¸öÁâÐκÍÁ½¸öµÈÑüÌÝÐΣ®ÄÇô£¬¹¹³ÉÁâÐεÄËĸö¶¥µãÊÇ
B£¬E£¬D£¬F
»ò
E£¬D£¬C£¬G
£»¹¹³ÉµÈÑüÌÝÐεÄËĸö¶¥µãÊÇ
B£¬E£¬D£¬C
»ò
E£¬D£¬G£¬F
£»
£¨2£©ÇëÄã¸÷Ñ¡ÔñÆäÖÐÒ»¸öͼÐμÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªRt¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬¡ÏBAC=90¡ã£¬AH¡ÍBC£¬´¹×ãΪD£¬¹ýµãB×÷ÏÒBF½»ADÓڵ㾫Ӣ¼Ò½ÌÍøE£¬½»¡ÑOÓÚµãF£¬ÇÒAE=BE£®
£¨1£©ÇóÖ¤£º
AB
=
AF
£»
£¨2£©ÈôBE•EF=32£¬AD=6£¬ÇóBDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5¡¢Èçͼ£¬ÒÑÖªRt¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC£¬PÊÇBCÑÓ³¤ÏßÉÏÒ»µã£¬PE¡ÍAB½»BAÑÓ³¤ÏßÓÚE£¬PF¡ÍAC½»ACÑÓ³¤ÏßÓÚF£¬DΪBCÖе㣬Á¬½ÓDE£¬DF£®ÇóÖ¤£ºDE=DF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªRt¡÷ABCÖУ¬¡ÏCAB=30¡ã£¬BC=5£®¹ýµãA×öAE¡ÍAB£¬ÇÒAE=15£¬Á¬½ÓBE½»ACÓÚµãP£®
£¨1£©ÇóPAµÄ³¤£»
£¨2£©ÒÔµãAΪԲÐÄ£¬APΪ°ë¾¶×÷¡ÑA£¬ÊÔÅжÏBEÓë¡ÑAÊÇ·ñÏàÇУ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªRt¡÷ABCÖСÏA=90¡ã£¬AB=3£¬AC=4£®½«ÆäÑرßABÏòÓÒƽÒÆ2¸öµ¥Î»µÃµ½¡÷FGE£¬ÔòËıßÐÎACEGµÄÃæ»ýΪ
14
14
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸