有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A1,A2表示一双,用B1,B2表示另一双)放置在卧室地板上.若从这四只拖鞋中随机取出两只,恰好配成相同颜色的一双拖鞋的概率是( )
A. B. C. D.
B 【解析】试题解析:画树状图得: ∵从这四只拖鞋中随机抽出两只,共有12种不同的情况,恰好配成形同颜色的一双拖鞋的有4种情况, ∴P(恰好配成形同颜色的一双拖鞋)=. 故选B.科目:初中数学 来源:2017-2018学年黑龙江省哈尔滨市双城区七年级(上)期末数学试卷(五四学制) 题型:解答题
某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配 一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?(4分)
甲:25人 乙60人 【解析】 试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量 的2倍列出方程进行求解. 试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套 由题意得:3×16x=2×10(85-x) 解得:x=25 则85-x=85-25=60(人) 答:甲部件安排20人...查看答案和解析>>
科目:初中数学 来源:人教版七年级下册数学第五章相交线与平行线单元检测卷 题型:单选题
将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )
A. 43° B. 47° C. 30° D. 60°
B 【解析】试题解析:如图,延长BC交刻度尺的一边于D点, ∵AB∥DE, ∴∠β=∠EDC, 又∠CED=∠α=43°, ∠ECD=90°, ∴∠β=∠EDC=90°-∠CED=90°-43°=47° 故选B.查看答案和解析>>
科目:初中数学 来源:2017-2018学年九年级数学北师大版上册 第3章 概率的进一步认识 单元测试卷 题型:填空题
在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为 .
3. 【解析】 试题分析:根据题意得:=,解得:m=3.故答案为:3.查看答案和解析>>
科目:初中数学 来源:2017-2018学年九年级数学北师大版上册 第3章 概率的进一步认识 单元测试卷 题型:单选题
如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )
A. B. C. D.
B 【解析】试题解析:列表如下: 1 2 3 4 5 2 (1,2) (2,2) (3,2) (4,2) (5,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) ...查看答案和解析>>
科目:初中数学 来源:2017-2018学年八年级数学人教版上册 全册综合测试卷 题型:解答题
如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
(1)证明见解析;(2)BE+CF>EF.理由见解析. 【解析】试题分析:(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF; (2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF. 试题解析:(1)∵BG∥AC, ∴∠DBG=∠DCF. ∵D为BC的中点, ∴BD=CD 又∵∠BDG...查看答案和解析>>
科目:初中数学 来源:2017-2018学年八年级数学人教版上册 全册综合测试卷 题型:填空题
已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为________.
=+3 【解析】试题解析:设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程: =+3, 故答案为: =+3.查看答案和解析>>
科目:初中数学 来源:湖南邵阳市区2017-2018学年八年级上册数学期末试卷 题型:解答题
(10分)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,
求证:AB=AC+CD
小明同学经过思考,得到如下解题思路:
在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD
(1)请你根据以上解思路写出证明过程;
(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,
∠D=25°,其他条件不变,求∠B的度数。
(1)见解析;(2)50° 【解析】试题分析:先根据“SAS”证明△ADE≌△ADC,从而DE=DC, ∠AED=∠ACB,再由外角的性质可得∠B=∠BDE,从而BE=CD,然后利用等量代换证明结论;(2)利用外角的性质和角平分线的定义得到∠CAD= ,然后根据三角形内角和列方程求解. 【解析】 (1)∵AD为∠BAC的角平分线, ∴∠BAD=∠CAD. 在△ADE和△A...
查看答案和解析>>
科目:初中数学 来源:2018人教版八年级数学下册练习:第十七章达标检测卷 题型:单选题
如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为( )
A. B. C. D.
D 【解析】【解析】 ∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=.在Rt△ADC中,DC==1,∴BC=.故选D.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com