B
分析:首先利用平行四边形的性质证明AE∥CF,AE=CF,可证明四边形AECF是平行四边形,再根据AC=BC,E是AB的中点,可根据等腰三角形底边上的中线与底边上的高线重合证明∠AEC=90°,即可证明平行四边形AECF是矩形.
解答:四边形AECF是矩形;
证明:连接AC,
∵四边形ABCD是平行四边形,
∴AB=CD,
∵E、F分别是AB、CD的中点,
∴AE=CF,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形,
∵AC=BC,E是AB的中点,
∴CE⊥AB,
∴∠AEC=90°,
∴平行四边形AECF是矩形.
故选:B.
点评:此题主要考查了平行四边形的性质与判定,以及举矩形的判定,关键是熟练掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”).