分析 连接BD.先根据勾股定理求出BD的长度,再根据勾股定理的逆定理判断出△BCD的形状,再利用三角形的面积公式求解即可.
解答 解:连接BD.
∵∠A=90°,AB=3,AD=4,
∴BD=$\sqrt{A{D}^{2}+A{B}^{2}}$=5.
∵在△BCD中,BD2+DC2=25+144=169=CB2,
∴△BCD是直角三角形,
∴S四边形ABCD=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BD•CD
=$\frac{1}{2}$×3×4+$\frac{1}{2}$×5×12
=36.
故四边形ABCD的面积是36.
点评 本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△BCD的形状是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 开口向下,顶点坐标(1,3) | B. | 开口向上,顶点坐标(3,-1) | ||
C. | 开口向下,顶点坐标(-1,3) | D. | 开口向上,顶点坐标(-3,1) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x(26-2x)=80 | B. | x(24-2x)=80 | C. | (x-1)(26-2x)=80 | D. | x(25-2x)=80 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | y1≤y2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com