精英家教网 > 初中数学 > 题目详情
如图,⊙O为四边形ABCD外接圆,其中
CD
=
CB
,其中CE⊥AB于E.
(1)求证:AB=AD+2BE;
(2)若∠B=60°,AD=6,△ADC的面积为
15
2
3
,求AB的长.
(1)证明:过C点作CF⊥AD交AD的延长线于F点.
CD
=
CB

∴CD=CB,∠1=∠2.
又∵CF⊥AD,CE⊥AB,
∴CF=CE.
∴Rt△ACF≌Rt△ACE(HL),Rt△CDF≌Rt△CBE(HL),
∴AF=AE,DF=BE,
∴AD+DF=AB-BE,
∴AB=AD+DF+BE=AD+2BE,
∴AB=AD+2BE.

(2)∵S△ADC=
1
2
AD×CF=
15
2
3

∴CF=
5
2
3

由(1),得Rt△CDF≌Rt△CBE,
∴∠B=∠CDF=60°,
在△CDF中,求得DF=
5
2

∴AB=AD+2BE=6+
5
2
×2=11.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

正六边形的边长为a,面积为S,那么S关于a的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若正方形A1B1C1D1内接于正方形ABCD的内接圆,则
A1B1
AB
的值为(  )
A.
1
2
B.
2
2
C.
1
4
D.
2
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某公园的两个花圃,面积相等,形状分别为正三角形和正六边形,已知正三角形花圃的周长为50米,则正六边形花圃的周长(  )
A.大于50米B.等于50米C.小于50米D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

同一个圆的内接正方形与内接正六边形边长之比为(  )
A.2:3B.
3
2
C.
2
:2
D.
2
:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是(  )
A.
6
B.
8
C.
10
D.
17

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一种正六边形瓷砖的图案,其中的三条圆弧的圆心是正六边形的顶点,半径是正六边形的边长,若该正六边形的边长为6,则图案中的阴影部分的面积是(  )
A.24π-9
3
B.12π-18
3
C.18π-27
3
D.36π-54
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若正方形内切圆的面积πcm2,则它的外接圆的面积是(  )cm2
A.2πB.
9
2
π
C.
9
4
π
D.
25
9
π

查看答案和解析>>

同步练习册答案