精英家教网 > 初中数学 > 题目详情
如图,将腰长为
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).
(1)点A的坐标为______,点B的坐标为______;
(2)抛物线的关系式为______,其顶点坐标为______;
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C′的位置.请判断点B′、C′是否在(2)中的抛物线上,并说明理由.
(1)过B作BE⊥x轴于E;
在Rt△AOC中,AC=
5
,OC=1,则OA=2;
故A(0,2);
由于△ACB是等腰直角三角形,则AC=BC,∠ACB=90°;
∴∠BCE=∠CAO=90°-∠ACO,
∴△BCE≌△CAO,
则CE=OA=2,BE=CO=1,
故B(-3,1);
∴A(0,2),B(-3,1).(2分)

(2)由于抛物线经过点B(-3,1),则有:
9a-3a-2=1,a=
1
2

∴解析式为y=
1
2
x2+
1
2
x-2
;(3分)
由于y=
1
2
x2+
1
2
x-2
=
1
2
(x+
1
2
)
2
-
17
8

故抛物线的顶点为(-
1
2
,-
17
8
).(4分)

(3)如图,过点B′作B′M⊥y轴于点M,过点B作BN⊥y轴于点N,过点C′作CP⊥y轴于点P;
在Rt△AB′M与Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1);
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,
可得点C′(2,1);
将点B′、C′的坐标代入y=
1
2
x2+
1
2
x-2

可知点B′、C′在抛物线上.(7分)
(事实上,点P与点N重合)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来,前两个月的利润情况如图所示,该图可以近似地看作抛物线的一部分,其中第x月的利润为y万元,往后y与x满足的关系不变.请结合图象解答下列问题:
(1)求抛物线对应的二次函数解析式;
(2)该公司在经营此款电脑的过程中,第几月的利润最大?最大利润是多少?
(3)公司打算,从月利润下降开始,每月对下月的销售额进行预测,若下月与该月的利润差额超过10万元,则下月就停止销售该产品,请你预测该产品持续销售的月数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为30
2
米,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息:

(1)请解答小华提出的问题;
(2)能否获得比800元更多的利润?若能,请举例说明;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正方形的边长为x,面积为y
(1)写出y与x的函数关系式;
(2)当面积为25时,正方形的边长是多少?
(3)画出此函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为______、______米.

查看答案和解析>>

同步练习册答案