【题目】某校门口竖着“前方学校,减速慢行”的交通指示牌CD,数学“综合与实践”小组的同学将“测量交通指示牌CD的高度”作为一项课题活动,他们定好了如下测量方案:
项目 | 内容 |
课题 | 测量交通指示牌CD的高度 |
测量示意图 | |
测量步骤 | (1)从交通指示牌下的点M处出发向前走10 米到达A处; (2)在点A处用量角仪测得∠DAM=27°; (3)从点A沿直线MA向前走10米到达B处;(4)在点B处用量角仪测得∠CBA=18°. |
请你帮助该小组同学根据上表中的测量数据,求出交通指示牌CD的高度.(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
科目:初中数学 来源: 题型:
【题目】如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形中,∥,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点、.设直线向右平移的距离为,线段的长为,且与的函数关系如图2所示,则四边形的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一种雪球夹的简化结构图,其通过一个固定夹体和一个活动夹体的配合巧妙地完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.当雪球夹闭合时,测得∠AOB=30°,OA=OB=14 cm,则此款雪球夹制作的雪球的直径AB的长度为________ cm.(结果保留一位小数.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,
(1)求证:△CBE≌△CPE;
(2)求证:四边形AECF为平行四边形;
(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD是△ABC的中线,AE∥BC,射线BE交AD于点F,交⊙O于点G,点F是BE的中点,连接CE.
(1)求证:四边形ADCE为平行四边形;
(2)若BC=2AB,求证: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形Ⅰ的面积为6,矩形Ⅱ中的三条边总长为6,则下列说法不正确的是( )
A.矩形Ⅰ中一组邻边的长满足反比例函数关系
B.矩形Ⅰ中一组邻边的长可能是3+和3﹣
C.矩形Ⅰ的周长不可能是8
D.矩形Ⅱ的最大面积是3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com