精英家教网 > 初中数学 > 题目详情
已知:如图,, 则下列结论不正确的是(    )
A.B.C.AD∥BCD.AB∥CD
D解析:
∵∠2=∠4,∠1=∠4,∴AE∥CF,AD∥BC.∴∠1=∠6.
∵∠1=∠2=∠4,∴∠2=∠4=∠6,∴∠3=∠5.故选D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图①,△ABC为边长为2的等边三角形,D、E、F分别为AB、AC、BC中点,连接DE、DF、EF.将△BDF向右平移,使点B与点C重合;将△ADE向下平移,使点A与点C重合,如图②.
(1)设△ADE、△BDF、△EFC的面积分别为 S1、S2、S3,则S1+S2+S3
3
(用“<、=、>”填空)精英家教网
精英家教网
(2)已知:如图③,∠AOB=∠COD=∠EOF=60°,AD=CF=BE=2,设△ABO、△FEO、△CDO的面积分别为S1、S2、S3;问:上述结论是否成立?若成立,请给出证明;若不成立,请说明理由.(可利用图④进行探究)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知:如图甲,△ABC内接于⊙O,AB为直径,∠CAP=∠B,则结论“AP与⊙O相切于点A”成立.
(1)若把条件“AB为直径”改为“AB为非直径的弦”,如图乙,其它条件不变,那么结论“AP与⊙O相切于点A”仍成立吗?请证明你的判断;
(2)在(1)的条件下,若D为弧AB上的一点,且弧AC=弧AD,过B、D两点的直线交PA于点E.求证:AB•DE=AC•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,梯形ABCD中,AD∥BC,∠ABC=90度.
(1)如图1,若AC⊥BD,且AC=5,BD=3,则S梯形ABCD=
 

(2)如图2,若DE⊥BC于E,BD=BC,F是CD的中点,试问:∠BAF与∠BCD的大小关系如何?请写出你的结论并加以证明;
(3)在(2)的条件下,若AD=EC,
S△ABFS△CEF
=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)已知:如图1,在DE上取一点A,以AD、AE为正方形的一边在同一侧作正方形ABCD和正方形AEFG,连接DG、BE,则线段DG、BE之间满足DG=BE且DG⊥BE;

根据所给图形完成以下问题的探索、证明和计算:
(1)如图2,将正方形AEFG绕A点顺时针旋转α度,即∠BAG=α (0°<α<180°),那么(1)中的结论是否仍成立?若不成立请说明理由,若成立请给出证明.
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,S是否有最大值?若有,求出S的最大值及相应的α值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

同步练习册答案