精英家教网 > 初中数学 > 题目详情

【题目】对于实数mn,定义一种运算“※”为:mnmn+n

(1)求2※5与2※(﹣5)的值;

(2)如果关于x的方程x※(ax)=﹣有两个相等的实数根,求实数a的值.

【答案】1)15,-15;(2)a=0.

【解析】

(1)根据新运算“※”的运算公式进行运算即可得出结论;(2)根据新运算“※”的运算公式将方程进行变形,再根据方程有两个相等的实数根结合根的判别式,即可得出关于a的一元一次不等式及一元二次方程,解之即可得出结论.

1)2※5=2×5+5=15;

2※(﹣5)=2×(﹣5)+(﹣5)=﹣15.

(2)x※(ax)=x※[(a+1)x]=xx+1)(a+1)=﹣

整理得:4(a+1)x2+4(a+1)x+1=0.

∵关于x的方程x※(ax)=﹣有两个相等的实数根,

a=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCDAC两点测得该塔顶端F的仰角分别为∠α=48°和∠β=65°,矩形建筑物宽度AD=20m,高度CD=30m,则信号发射塔顶端到地面的高度FG__米(结果精确到1m).

参考数据:sin48°=0.7cos48°=0.7tan48°=1.1cos65°=0.4tan65°=2.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求证:无论m为何值时,这个方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河的两岸l1l2相互平行,ABl1上的两点,CDl2上的两点,某人在点A处测得∠CAB=90°DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求CD两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=90°, BCx轴,抛物线y=ax2-2ax+3经过ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.

(1)求抛物线的解析式;

(2)连接CD,在抛物线的对称轴上是否存在一点P使PCD为直角三角形,若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种新商品每件进价是120在试销期间发现当每件商品售价为130元时每天可销售70当每件商品售价高于130元时每涨价1日销售量就减少1.据此规律请回答:

(1)当每件商品售价定为170元时每天可销售多少件商品?商场获得的日盈利是多少?

(2)在上述条件不变商品销售正常的情况下每件商品的销售价定为多少元时商场日盈利可达到1600?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB8CD2,则EC的长为(  )

A. 2B. 8C. D. 2

查看答案和解析>>

同步练习册答案