精英家教网 > 初中数学 > 题目详情
11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是(  )
A.40cmB.50cmC.60cmD.80cm

分析 首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.

解答 解:∵圆锥的底面直径为60cm,
∴圆锥的底面周长为60πcm,
∴扇形的弧长为60πcm,
设扇形的半径为r,
则$\frac{270πr}{180}$=60π,
解得:r=40cm,
故选A.

点评 本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,已知点B,D在反比例函数y=$\frac{a}{x}$(a>0)的图象上,点A,C在反比例函数y=$\frac{b}{x}$(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD的距离为1,则a-b的值是12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在一个口袋中有4个完全相同的小球,把它们分别标号1、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率.
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)频数百分比
2≤x<324%
3≤x<41224%
4≤x<51530%
5≤x<61020%
6≤x<7612%
7≤x<836%
8≤x<924%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.
(1)求证:∠1=∠F.
(2)若sinB=$\frac{\sqrt{5}}{5}$,EF=2$\sqrt{5}$,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次取的牌不能放回.
(1)若每人随机取手中的一张牌进行比赛,请列举出所有情况,并求学生乙本局获胜的概率;
(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当学生甲的三张牌出牌顺序为先出6,再出8,最后出10时,学生乙随机出牌应对,求学生乙本次比赛获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在“春节”期间,加开从赣州到南昌的豪华旅游列车,途中停靠站为泰和、吉安,现有互不认识的甲,乙两人从赣州上车.
(1)求甲在吉安下车的概率.
(2)用树形图或列表法求甲乙两人中至少有一人在吉安站下车的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知等式(x+a)(x+b)=x2-x+ab,则a+b的值是-1.

查看答案和解析>>

同步练习册答案