精英家教网 > 初中数学 > 题目详情

【题目】已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.

【答案】
(1)证明:∵∠ABC=∠DBE,

∴∠ABC+∠CBD=∠DBE+∠CBD,

∴∠ABD=∠CBE,

在△ABD与△CBE中,

∴△ABD≌△CBE(SAS)


(2)解:四边形BDCE是菱形.证明如下:

同(1)可证△ABD≌△CBE,

∴CE=AD,

∵点D是△ABC外接圆圆心,

∴DA=DB=DC,

又∵BD=BE,

∴BD=BE=CE=CD,

∴四边形BDCE是菱形


【解析】(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;(2)由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE是菱形.
【考点精析】利用菱形的判定方法和三角形的外接圆与外心对题目进行判断即可得到答案,需要熟知任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y=x的图象与函数y= 的图象在第一象限内交于点B,点C是函数y= 在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.

(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)在(1)的条件下,若tanE= ,BC= ,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14, ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知动点A在函数 的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为(
A.1
B.
C.2
D. +1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形DOE的半径为3,边长为 的菱形OABC的顶点A,C,B分别在OD,OE, 上,若把扇形DOE围成一个圆锥,则此圆锥的高为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是_____米,小明在书店停留了_____分钟;

(2)本次上学途中,小明一共行驶了______米,一共用了_____分钟;

(3)在整个上学的途中______(哪个时间段)小明骑车速度最快,最快的速度是____/分;

(4)小明出发多长时间离家1200米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1+(﹣12017﹣(),

223a2b2ab2)﹣3ab2+2a2b),

3)﹣7x2y3xy2+5x2y+13xy,其中x=﹣y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠BOPOP上点C,点A(A的左侧),嘉嘉进行如下作图:

以点O为圆心,OC为半径画弧,交OB于点D,连接CD

以点A为圆心,OC为半径画弧MN,交AP于点M

以点M为圆心,CD为半径画弧,交MN于点E,连接ME,作射线AE

如图所示,则下列结论不成立的是(  )

A. CDEM B. AEOB C. ODC=∠AEM D. OAE=∠BDC

查看答案和解析>>

同步练习册答案