精英家教网 > 初中数学 > 题目详情
如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.

(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.
(1)证明见解析;(2) BD=.

试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,证明四边形AEFD是平行四边形;
(2)过点D作DG⊥AB于点G,利用已知条件和锐角三角函数以及勾股定理即可求出BD的长..
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB‖CD且AB="CD,"
∵E,F分别是AB,CD的中点,
 
∴AE="DF,"
∴四边形AEFD是平行四边形;
(2)过点D作DG⊥AB于点G.

∵AB=2AD=4,
∴AD=2.
在Rt△AGD中,∵∠AGD=90°,∠A=60°,AD=2,
 
∴BG="AB-AG=3"
在Rt△DGB中,∵∠DGB=90°,DG= ,BG=3,
 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,请猜想,CE和CF的大小有什么关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上。

(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了探索代数式的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于      ,此时       ;
(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E, OE=3cm,则AD的长为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图,在平行四边形ABCD中,∠ABC的平分线与AD相交于点P,下列说法中正确的是(   )
①△APB是等腰三角形 ②∠ABP+∠BPD=180°③PD+CD=BC ④
A.①②④B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AB=4cm,则矩形的对角线长为

A. 4cm  B.6cm   C. 8cm   D.10cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E、F分别是AM、MR的中点,则EF的长随着M点的运动(   )
A.变短B.变长C.不变D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形ABCD中,若对角线长AC=8cm,BD=6cm.则边长AB=       cm.

查看答案和解析>>

同步练习册答案