【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
【答案】解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0。
∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根。
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=0,解得,m=2,
则方程的另一根为:m+2-1=2+1=3。
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+。
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+。
【解析】(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论。
(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根。分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算。
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形△APQ.
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学七年级A班有50人,某次活动中分为四组,第一组有人,第二组是第一组的2倍多6人,第三组的人数等于第一组与第二组人数的和.
(1)第二组的人数 ,第三组的人数 ;(用含的式子表示)
(2)求第四组的人数.(用含的式子表示)
(3)试判断当a=7时,是否满足题意.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一次函数y=kx+b与反比例函数y= 的图像如图所示,则关于x的不等式kx+b﹣ ≤﹣2的解集为( )
A.0<x≤2或x≤﹣4
B.﹣4≤x<0或x≥2
C. ≤x<0或x
D.x 或0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0)
(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣ ,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com