精英家教网 > 初中数学 > 题目详情
如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是(  )
A.Ll=L2B.L1>L2C.L2>L1D.无法确定

∵等边三角形各内角为60°,∴∠B=∠C=60°,
∵∠BPD=∠CPE=30°,
∴在Rt△BDP和Rt△CEP中,
∴BP=2BD,CP=2CE,
∴BD+CE=
1
2
BC,
∴AD+AE=AB+AC-
1
2
BC=
3
2
BC,
∴BD+CE+BC=
3
2
BC,
L1=
3
2
BC+DE,
L2=
3
2
BC+DE,
即得L1=L2
故选 A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;
(2)当B′Ey轴时,求点B′和点E的坐标;
(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于(  )
A.
3
B.2
3
C.4
3
D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,图1是一块边长为1,面积记为S1的正三角形纸板,沿图1的底边剪去一块边长为
1
2
的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的
1
2
)后,得图3,图4,…,记第n(n≥3)块纸板的面积为Sn,则Sn=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.
(1)求证:AE=BD;
(2)求证:MNAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角______等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距(  )
A.30海里B.40海里C.50海里D.60海里

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A是BC上一点,△ABD、△ACE都是等边三角形.
试说明:
(1)AM=AN;
(2)MNBC;
(3)∠DOM=60°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是(  )
A.d>hB.d<hC.d=hD.无法确定

查看答案和解析>>

同步练习册答案