精英家教网 > 初中数学 > 题目详情

阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.

小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).

请回答:∠ACE的度数为  ,AC的长为   

参考小腾思考问题的方法,解决问题:

如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.


解:∠ACE=75°,AC的长为3.

过点D作DF⊥AC于点F.

∵∠BAC=90°=∠DFA,

∴AB∥DF,

∴△ABE∽△FDE,∴=2,

∴EF=1,AB=2DF.

在△ACD中,∠CAD=30°,∠ADC=75°,

∴∠ACD=75°,AC=AD.

∵DF⊥AC,

∴∠AFD=90°,

在△AFD中,AF=2+1=3,∠FAD=30°,

∴DF=AFtan30°=,AD=2DF=2

∴AC=AD=2,AB=2DF=2

∴BC==2


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


2的相反数是(  )

    A.                       ﹣2 B.                       ﹣                            C.        D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:


在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为   m.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求证:方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列运算正确的是(  )

 

A.

a3+a3=a6

B.

a6÷a2=a4

C.

a3•a5=a15

D.

(a34=a7

查看答案和解析>>

科目:初中数学 来源: 题型:


某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是(  )

 

A.

=2

B.

=2

 

C.

=2

D.

=

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①,双曲线y=(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.

(1)求双曲线和抛物线的解析式;

(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;

(3)如图②过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是(  )

 

A.

S1=S2

B.

2S1=S2

C.

3S1=S2

D.

4S1=S2

查看答案和解析>>

同步练习册答案