【题目】如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)如图所示见解析;(2)如图所示,点E表示的数为:﹣3.5,CE=4﹣(﹣3.5)=7.5;(3)OC之间共有65个点;这些点所表示的数的和为130.
【解析】
(1)根据数轴上的点移动时的大小变化规律,即“左减右加”即可得到结论;
(2)根据题意列式计算即可;
(3)根据题意得到点数是2的指数次幂+1,据此计算即可.
(1)如图所示,
(2)如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5;
(3)∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
科目:初中数学 来源: 题型:
【题目】某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:
请根据上面的信息,解决问题:
(1)试计算两种笔记本各买了多少本?
(2)请你解释:小明为什么不可能找回68元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:
(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE= ,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.
(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是( )
A. 4<m<6 B. 4≤m≤6 C. 4<m<5 D. 4≤m<5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲、乙两个容器,分别装有进水管和出水管,两容器的进、出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进、出水管.打开和关闭水管的时间忽略不计.容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示.
(1)求甲容器的进、出水速度;
(2)甲容器的进、出水管都关闭后,是否存在两容器的水量相等?若存在,求出此时的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用2730元购进A、B两种新型节能日光灯共60盏,这两种日光灯的进价、标价如下表所示.
价格/类型 | A型 | B型 |
进价(元/盏) | 35 | 65 |
标价(元/盏) | 50 | 100 |
(1)这两种日光灯各购进多少盏?
(2)若A型日光灯按标价的9折出售,要使这批日光灯全部售出后商场获得810元的利润,则B型日光灯应按标价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面一段文字,再回答后面的问题.
已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),点P1,P2间的距离公式P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2-x1|或|y2-y1|.
(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;
(2)已知各顶点坐标为A(0,6),B(-3,2),C(3,2),你能判定△ABC的形状吗?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com