精英家教网 > 初中数学 > 题目详情

一个二次函数的图象经过点(0,0),(-1,-1),(1,9)三点,求这个函数的关系式.

解:设二次函数的关系式为y=ax2+bx+c(a≠0),
∵二次函数的图象经过点(0,0),(-1,-1),(1,9)三点,
∴点(0,0),(-1,-1),(1,9)满足二次函数的关系式,

解得
所以这个函数关系式是:y=4x2+5x.
分析:先设二次函数的一般关系式,然后将已知条件代入其中并解答即可.
点评:本题主要考查的是利用待定系数法求二次函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=ax2-(a+1)x-4(a为常数)
(1)已知二次函数y=ax2-(a+1)x-4的图象的顶点在y轴上,求a的值;
(2)经探究发现无论a取何值,二次函数的图象一定经过平面直角坐标系内的两个定点.请求出这两个定点的坐标;
(3)已知关于x的一元二次方程ax2-(a+1)x-4=0的一个根在-1和0之间(不含-1和0),另一个根在2和3之间(不含2和3),试求整数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某医药研究所开发了一种新药,在试验药效时发现:成人按规定剂量服用后,在0~12小时以内,每毫升血液中含药量y(微克)随时间x(小时)的变化规律与某一个二次函数y=ax2+bx(a≠0)的图象相吻合.经测试,服药后2小时每毫升血液中含药量10微克;服药后4小时每毫升血液中含药量16微克.
(1)当0≤x≤12时,求出y与x之间的函数关系式;
(2)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间是几小时?

查看答案和解析>>

科目:初中数学 来源:2010年江苏省扬州中学树人学校中考数学二模试卷(解析版) 题型:解答题

某医药研究所开发了一种新药,在试验药效时发现:成人按规定剂量服用后,在0~12小时以内,每毫升血液中含药量y(微克)随时间x(小时)的变化规律与某一个二次函数y=ax2+bx(a≠0)的图象相吻合.经测试,服药后2小时每毫升血液中含药量10微克;服药后4小时每毫升血液中含药量16微克.
(1)当0≤x≤12时,求出y与x之间的函数关系式;
(2)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间是几小时?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2-(a+1)x-4(a为常数)
(1)已知二次函数y=ax2-(a+1)x-4的图象的顶点在y轴上,求a的值;
(2)经探究发现无论a取何值,二次函数的图象一定经过平面直角坐标系内的两个定点.请求出这两个定点的坐标;
(3)已知关于x的一元二次方程ax2-(a+1)x-4=0的一个根在-1和0之间(不含-1和0),另一个根在2和3之间(不含2和3),试求整数a的值.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省扬州市高邮市九年级第二次网络阅卷适应性数学试卷(解析版) 题型:解答题

已知二次函数y=ax2-(a+1)x-4(a为常数)
(1)已知二次函数y=ax2-(a+1)x-4的图象的顶点在y轴上,求a的值;
(2)经探究发现无论a取何值,二次函数的图象一定经过平面直角坐标系内的两个定点.请求出这两个定点的坐标;
(3)已知关于x的一元二次方程ax2-(a+1)x-4=0的一个根在-1和0之间(不含-1和0),另一个根在2和3之间(不含2和3),试求整数a的值.

查看答案和解析>>

同步练习册答案