精英家教网 > 初中数学 > 题目详情

证明题

如图,已知在梯形ABCD中,AB∥CD,CD⊥AD,∠BCA=∠BAC,又AE⊥BC于E,求证CD=CE.

答案:
解析:

证明:因为AB∥CD,所以∠BAC=∠ACD.因为∠BAC=∠BCA,所以∠ACD=∠BCA.又因为AD⊥CD,AE⊥BC,所以∠D=∠AEC=,而AC=AC,所以△ADC≌△AEC,所以CD=CE.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、作图题:
(1)正三角形给人以“稳如泰山”的美感,它具有独特的对称性,请你用三种不同的分割方法,将下列三个正三角形分别分割成四个等腰三角形.(在图中画出分割线,并标出必要的角的度数)

(2)如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求尺规作图,保留作图痕迹,不必写出作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州)一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:(此题分数加入总分,但总分超过100分就计100分)
如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上由B点向C点运动,同时,点Q在线段CA上由点C向点A运动.
(1)如果点P、Q的速度均为3厘米/秒,经过1秒后,△BPD与△CQP是否全等?请说明理由;
(2)若点P的运动速度为2厘米/秒,点Q的运动速度为2.5厘米/秒,是否存在某一个时刻,使得△BPD与△CQP全等?如果存在请求出这一时刻并证明;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010-2011年浙江省嵊州市九年级上学期期末考试数学卷 题型:解答题

.(本小题满分12分)

如图,已知在⊙O中,直径AB=10,点E是OA上任意一点,过E作弦CD⊥AB,点F是弧BC上一点,连结AF交CE于H,连结AC、CF、BF。

1.(1)请你找出图中的相似三角形,并对其中的一对相似三角形进行证明;

2.(2)若AE:BE=1:4,求CD长。

3.(3)在(2)的条件下,求的值。

 

查看答案和解析>>

同步练习册答案