解:(1)过点C作CH⊥x轴,垂足为H;
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,
∴OB=4,OA=2
;
由折叠的性质知:∠COB=30°,OC=AO=2
,
∴∠COH=60°,OH=
,CH=3;
∴C点坐标为(
,3).
(2)∵抛物线y=ax
2+bx(a≠0)经过C(
,3)、A(2
,0)两点,
∴
,
解得
;
∴此抛物线的函数关系式为:y=-x
2+2
x.
(3)存在.
∵y=-x
2+2
x的顶点坐标为(
,3),
即为点C,MP⊥x轴,垂足为N,设PN=t;
∵∠BOA=30°,
∴ON=
t,
∴P(
t,t);
作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;
把x=
t代入y=-x
2+2
x,
得y=-3t
2+6t,
∴M(
t,-3t
2+6t),E(
,-3t
2+6t),
同理:Q(
,t),D(
,1);
要使四边形CDPM为等腰梯形,只需CE=QD,
即3-(-3t
2+6t)=t-1,
解得t=
,t=1(舍),
∴P点坐标为(
,
),
∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(
,
).
分析:(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C的坐标.
(2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.
(3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标.
点评:此题主要考查了图形的旋转变化、解直角三角形、二次函数解析式的确定、等腰梯形的判定和性质等重要知识点,难度较大.