精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,       
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.

(1)DNA或△DPA;;(2)C(4,t),;(3)a>0或a<<a<0;(4)
0<t≤

解析试题分析:(1)根据全等三角形的判定定理SAS证得:△AOB≌△DNA或DPA≌△BMC;根据图中相关线段间的和差关系来求点A的坐标:
∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).
在△AOB与△DNA中,∵,∴△AOB≌△DNA(SAS).
同理△DNA≌△BMC.
∵点P(0,4),AP=t,∴
(2)利用(1)中的全等三角形的对应边相等易推知:OM=OB+BM=t+=4,则C(4,t).把点O、C的坐标分别代入抛物线y=ax2+bx+c可以求得确.
(3)利用待定系数法求得直线OD的解析式.与抛物线联立方程组,解得x=0或
对于抛物线的开口方向进行分类讨论,即a>0和a<0两种情况下的a的取值范围.
(4)根据抛物线的解析式得到顶点坐标是.结合已知条件求得a=,故顶点坐标为.由抛物线的性质知:只与顶点坐标有关,故t的取值范围为:0<t≤
试题解析:解:(1)DNA或△DPA;.
(2)由题意知,NA=OB=t,则OA=
∵△AOB≌△BMC,∴CM="OB=t." ∴OM=OB+BM=t+="4." ∴C(4,t).
又抛物线y=ax2+bx+c过点O、C,
,解得.
(3)当t=1时,抛物线为,NA=OB=1,OA=3.
∵△AOB≌△DNA,∴DN=OA=3.
∵D(3,4),∴直线OD为:
联立方程组,得,消去y,得
解得,x=0或.
所以,抛物线与直线OD总有两个交点.
讨论:①当a>0时,>3,只有交点O,所以a>0符合题意;
②当a<0时,若>3,则a<
<0,则得a>.∴<a<0.
综上所述,a的取值范围是a>0或a<<a<0.
(4)∵抛物线为,∴顶点坐标是
又∵对称轴是直线x=,∴a=.
∴顶点坐标为:,即
∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,
∴只与顶点坐标有关,∴t的取值范围为:0<t≤

考点:1.二次函数综合题;2.线动平移问题;3.全等三角形的判定和性质;4.待定系数法的应用;5.曲线上点的坐标与方程的关系;6.二次函数的性质;7.平移的性质;8.分类思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

有一个二次函数的图象,三位学生分别说出了它的一些特点.
甲:对称轴是直线x=4;
乙:与x轴两交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;
请写出满足上述全部特点的二次函数解析式:          

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线过点轴正半轴上的动点,的垂直平分线交于点,交轴于点
(1)直接写出直线的解析式;
(2)当时,设的面积为,求S关于t的函数关系式;并求出S的最大值;
(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.
(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.
(1)求该抛物线的解析式及点M的坐标;
(2)连接ON,AC,证明:∠NOB=∠ACB;
(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.
(1)试用含m的代数式表示A、B两点的坐标;
(2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;
(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠BAC=90°, BC∥x轴,抛物线y=ax2-2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.

(1)求抛物线的解析式;
(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形,若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案