精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=3,BC=4,P是边BC延长线上的一点,连接AP交边CD于点E,把射线AP沿直线AD翻折,交射线CD于点Q,设CP=x,DQ=y,
(1)求证:△ADQ∽△PBA,并求出y关于x的函数解式;
(2)当点P运动时,△APQ的面积S是否会发生变化?若发生变化,请说明理由:若不发生变化,请求出S的值;
(3)当以4为半径的⊙Q与直线AP相切,且⊙A与⊙Q也相切时,求⊙A的半径.

【答案】分析:(1)根据翻折的性质知:∠QAD=∠DAE=∠APB,由此可证得△QAD∽△APB,根据相似三角形所得比例线段即可求得y、x的函数关系式.
(2)由翻折的性质易证得△ADE≌△ADQ,可得QD=DE,即QE=2y,而△AQP的面积可由QE•BP的一半(即QD•BP)求得,由(1)知,QD•BP为定值即12,因此△APQ的面积是不会变化的.
(3)若⊙Q与直线AP相切,且半径为4,根据△APQ的面积即可求得AP的长,进而可得∠APB、∠QAD的度数,从而根据AD的长求得AQ的值;然后分⊙A与⊙Q内切、外切两种情况分类求解即可.
解答:解:(1)在矩形ABCD中,
∵AD∥BC,
∴∠APB=∠DAP,
由题意,得∠QAD=∠DAP,
∴∠APB=∠QAD,
∵∠B=∠ADQ=90°,
∴△ADQ∽△PBA,
=,即=
∴y=,定义域为x>0.

(2)不发生变化,
证明:在△ADE和△ADQ中,

∴△ADE≌△ADQ,
∴DE=DQ=y;
∴S△APQ=S△AEQ+S△EPQ
=QE•AD+QE•CP
=QE(AD+CP)
=QE•BP=DQ•BP
=y×(x+4)
=12;
所以△APQ的面积没有变化.

(3)过点Q作QF⊥AP于点F
∵以4为半径的⊙Q与直线AP相切,
∴QF=4,
∵S△APQ=12,
∴AP=6,
在Rt△ABP中,
∵AB=3,
∴∠BPA=30°,
∴∠PAQ=60°,此时BC=AD=4,DE=AD•tan30°=
∴AQ=EQ=2DE=
设⊙A的半径为r,
∵⊙A与⊙Q相切,
∴⊙A与⊙Q外切或内切.
(i)当⊙A与⊙Q外切时,AQ=r+4,即=r+4,
∴r=-4.
(ii)当⊙A与⊙Q内切时,AQ=r-4,即=r-4,
解得:r=+4.
综上所述,⊙A的半径为-4或+4.
点评:此题主要考查了图形的翻折变换、矩形的性质、相似三角形的判定和性质、三角形面积的求法以及圆与圆的位置关系等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案