【题目】如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断:
①四条抛物线的开口方向均向下;
②当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小;
③抛物线y1的顶点在抛物线y2顶点的上方;
④抛物线y4与y轴的交点在点B的上方.
所有正确结论的序号为_____.
【答案】②③④.
【解析】
用待定系数法确定四条抛物线的表达式,用函数图象的性质即可求解.
解:将点A、B、C的坐标代入抛物线表达式得:,
解得:,
故抛物线y1的表达式为:y1=﹣x2+x+3,顶点();
同理可得:y2=﹣x2+x+3,顶点坐标为:(,);
y3=﹣x2+x+3;
y4=﹣x2+2x+6,与y轴的交点为:(0,6);
①由函数表达式知,四条抛物线的开口方向均向下,错误,不符合题意;
②当x<0时,y3随x的增大而减小,故正确,符合题意;
③由顶点坐标知,抛物线y1的顶点在抛物线y2顶点的上方,正确,符合题意;
④抛物线y4与y轴的交点(0,6)在B的上方,正确,符合题意.
故答案为:②③④.
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x<0)的图象上,点B在X轴的负半轴上,AB=AO=13,线段OA的垂直平分线交线段AB于点C,△BOC的周长为23,则k的值为( )
A.60B.30C.-60D.-30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求m的值及这个二次函数的解析式;
(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线y=x﹣3与x轴、y轴分别交于点A、B,抛物线y=x2+bx+c经过点A、B,且交x轴于点C.
(1)求抛物线的解析式;
(2)点P为抛物线上一点,且点P在AB的下方,设点P的横坐标为m.
①试求当m为何值时,△PAB的面积最大;
②当△PAB的面积最大时,过点P作x轴的垂线PD,垂足为点D,问在直线PD上否存在点Q,使△QBC为直角三角形?若存在,直接写出符合条件的Q的坐标若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时 公交车用时的频数 线路 | 合计 | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(2k+1)x+4k-3=0,当Rt△ABC的斜边a=,且两直角边b和c恰好是这个方程的两个根时,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉善县将开展以“珍爱生命,铁拳护航”为主题的交通知识竞赛,某校对参加选拔赛的若干名同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的频数统计表和扇形统计图
成绩等级 | 频数(人数) | 频率 |
A | 4 | 0.08 |
B | m | 0.52 |
C | n | |
D | ||
合计 | 1 |
(1)求m= ,n= ;
(2)在扇形统计图中,求“C等级”所对应圆心角的度数;
(3)“A等级”的4名同学中有3名男生和1名女生,现从中随机挑选2名同学代表学校参加全县比赛,请用树状图法或列表法求出恰好选中“一男一女”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com